
Depth-Fighting Aware Methods
for Multifragment Rendering

Andreas-Alexandros Vasilakis and Ioannis Fudos, Member, IEEE

Abstract—Many applications require operations on multiple fragments that result from ray casting at the same pixel location. To this

end, several approaches have been introduced that process for each pixel one or more fragments per rendering pass, so as to produce

a multifragment effect. However, multifragment rasterization is susceptible to flickering artifacts when two or more visible fragments of

the scene have identical depth values. This phenomenon is called coplanarity or Z-fighting and incurs various unpleasant and

unintuitive results when rendering complex multilayer scenes. In this work, we develop depth-fighting aware algorithms for reducing,

eliminating and/or detecting related flaws in scenes suffering from duplicate geometry. We adapt previously presented single and

multipass rendering methods, providing alternatives for both commodity and modern graphics hardware. We report on the efficiency

and robustness of all these alternatives and provide comprehensive comparison results. Finally, visual results are offered illustrating

the effectiveness of our variants for a number of applications where depth accuracy and order are of critical importance.

Index Terms—Depth peeling, Z-fighting, visibility ordering, multi-fragment rendering, A-buffer

Ç

1 INTRODUCTION

CURRENT graphics hardware facilitate real-time render-
ing for applications that require accurate multifrag-

ment processing such as Three-dimensional scene
inspection for games and animation, solid model browsing
for computer-aided design, constructive solid geometry,
visualization of self-crossing surfaces, and wireframe
rendering in conjunction with transparency and translu-
cency. This is accomplished by processing multiple
fragments per pixel during rasterization.

Z-fighting is a phenomenon in Three-dimensional ren-
dering that occurs when two or more primitives have the
same or similar values in the Z-buffer (see Fig. 1). Z-fighting
may manifest itself through: 1) intersecting surfaces that
result in intersecting primitives, 2) overlapping surfaces,
i.e., surfaces containing one or more primitives that are
coplanar and overlap, 3) nonconvergent surfaces due to the
fixed-point round-off errors of perspective projection.

Traditional hardware supported rendering techniques
do not treat Z-fighting and render only one of the fragments
that possess the same depth value. This results in dotted or
dashed lines or heavily speckled surface areas. In this
context, Z-fighting cannot be totally avoided and may be
reduced by using a higher depth buffer resolution and
inverse mapping of depth values in the depth buffer [1] or
using depth bias [2].

Multifragment capturing techniques are even more
susceptible to Z-fighting, because they need to examine all
fragments (even those that are not visible) in a certain order
(ascending, descending or both) before deciding what to

render. Thus, they may encounter multiple Z-fighting
triggered liabilities per pixel.

Correct depth peeling techniques are important for a
number of coplanarity-sensitive applications (see Fig. 2),
from nonphotorealistic rendering (e.g., order-independent
transparency [3], styled/wireframe rendering [4]) to sha-
dow volumes, Boolean operations, self-trimmed surfaces
[5], and visualization of intersecting surfaces [6].

In this work, we do not treat the numerical robustness/
instability that arises due to the finite precision of the Z-
buffer and the numerical errors incurred from the transfor-
mations applied prior to rendering. However, we introduce
image-based coplanarity-aware algorithms for reducing
(may miss fragments but are usually faster), eliminating
(guaranteed to extract all fragments) and/or detecting-
highlighting-related flaws in scenes suffering from coplanar
geometry. We provide alternatives for both commodity and
modern graphics hardware. We further present quantitative
and qualitative results with respect to performance, space
requirements, and robustness. A short discussion is offered
on how to select a variant from the given repertoire based
on the application, the scene complexity, and the hardware
limitations. Finally, visual output is provided illustrating
the effectiveness of our variants over the conventional
methods for a number of Z-fighting sensitive applications.

The structure of this paper is as follows: Section 2 offers a
brief overview of prior art. Section 3 introduces robust and
approximate algorithm variants along with several optimi-
zation techniques. Section 4 provides extensive comparative
results for all multifragment rendering alternatives. Finally,
Section 5 offers conclusions and identifies promising
research directions.

2 RELATED WORK

Fragment level techniques work by sorting surfaces
viewed through each sample position, avoiding the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013 1

. The authors are with the Department of Computer Science, University of
Ioannina, Ioannina 45110, Greece. E-mail: {abasilak, fudos}@cs.uoi.gr.

Manuscript received 10 Jan. 2012; revised 19 July 2012; accepted 6 Oct. 2012;
published online 15 Oct. 2012.
Recommended for acceptance by W. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2012-01-0008.
Digital Object Identifier no. 10.1109/TVCG.2012.300.

1077-2626/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

sorting drawbacks that occur in object/primitive sorting
techniques [7], [8] (e.g., geometry interpenetration, primi-
tive splitting) or hybrid methods that order the generated
fragments by exploiting spatial coherency [9], [10], [11].
These algorithms can be classified in two broad cate-
gories, those using depth peeling and those employing
hardware implemented buffers, according to the approach
taken to resolve visibility ordering [3].

Given the limited memory resources of graphics hard-
ware, multipass rendering is often required to carry out
complex effects, often substantially limiting performance.
Probably, the most well-known multipass peeling techni-
que is front-to-back (F2B) depth peeling [12], which works
by rendering the geometry multiple times, peeling off a
single fragment layer per pass. Dual depth peeling (DUAL)
[13] speeds up multifragment rendering by capturing both
the nearest and the furthest fragments in each pass.
Finally, Liu et al. [14] extend dual depth peeling by
extracting two fragments per uniform clustered bucket
(BUN). To reduce collisions at scenes with highly nonuni-
form distributions of fragments, they further propose to
adaptively subdivide depth range (BAD) according to frag-
ment occupation [15] at the expense of extra rendering
passes and larger memory overhead.

However, all currently proposed depth peeling techni-
ques cannot deal with fragments of equal depth, thus
detecting only one of them and missing the others. A
number of solutions have been introduced to alleviate
coplanarity issues in depth peeling. Cole and Finkelstein
[4] propose id peeling, which addresses artifacts where
lines obscure other lines by allowing a line fragment to
pass only if its index is lower than the highest index at
the corresponding pixel in the previous iteration. Despite
its accurate behavior, it peels only one fragment per
peeling iteration and cannot support rendering of oc-
cluded edges. Vasilakis and Fudos [16] extend this work
to a multipass scheme achieving robust rendering beha-
vior with the tradeoff of low frame rates. Recently,
Busking et al. [6] introduced coplanarity peeling extending
F2B with in/out classification masking. However, it can
only distinguish coplanar fragments between different
objects that do not self-intersect.

On the other hand, buffer-based methods use GPU-
accelerated structures to hold multifragments (even copla-
nar) per pixel. The major limitations of this class are first,
the potentially large and possible wasted memory require-
ments due to their strategy to allocate the same memory for
each pixel (see Fig. 3a) and second, the necessity of an

additional fullscreen postprocessing pass to sort the
captured fragments. K-buffer (KB) [17] and stencil routed
A-buffer (SRAB) [18] increase performance by capturing up
to k fragments in a single rendering pass. Read-modify-
write hazards (RMWH) during KB updates can be fixed
using a multipass variation of this algorithm (MultiKB)
[19]. Conversely, SRAB avoids RMWH but is incompatible
with hardware supported multisample antialiasing and
stencil operations. Recently, Yu et al. [20] develop a
sorting-free and memory-aware GPU-based k-buffer tech-
nique for their hair rendering framework.

Liu et al. [21] introduce a complete CUDA-based raster-
ization pipeline (FreePipe) maintaining multiple unbounded
fragments per pixel in real time. To supersede pixel level
parallelism, Patney et al. [22] extend the domain of
parallelization to individual fragments. However, both
methods limit user to switch from the traditional graphics
pipeline to a software rasterizer. FreePipe has been realized
using modern OpenGL APIs (FAB) [23].

To alleviate the memory consumption of fixed-length
structures, Yang et al. [24] proposed dynamic creation of
per-pixel linked lists (LL) on the GPU. However, its
performance degrades rapidly due to the heavy fragment
contention and the random memory accesses when assem-
bling the entire fragment list (see Fig. 3b).

To avoid limitations of constant-size array and linked-
lists structures, S-buffer (SB) [25] organizes linearly memory
into variable contiguous regions for each pixel as shown in
Fig. 3c. The memory offset lookup table is computed in a
parallel fashion exploiting sparsity in the pixel space.
However, the need of an additional rendering step results
in performance downgrade when compared to FAB.

3 CORRECTING RASTER-BASED PIPELINES

We have investigated two approaches to treat fragment
coplanarity in image space that can be applied to several
depth peeling methods. Both approaches can be success-
fully integrated into the standard graphics pipeline and can
take advantage of features such as multisample antialising
(MSAA), GPU tessellation and geometry instancing. First,
we introduce an additional term to the depth comparison

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 1. Illustrating unpleasant effects when rendering (a) intersecting or
(b) overlapping surfaces on popular modeling programs.

Fig. 2. Illustrating the values of the popular winding number when ray
casting for in/out classifications. Red-painted values highlight erroneous
computations (in cases where only one of the two coplanar fragments is
successfully captured).

operator. Second, we present an efficient pipeline that can
capture multiple coplanar fragments per depth layer by
exploiting the advantages of buffer-based techniques. The
core methodology for these extensions is explained in
detail by applying it to the F2B depth peeling method
(shader-like pseudocode is also provided). Then, a brief
discussion is provided for applying it to the other depth
peeling techniques.

We classify our algorithms based on the fragment hit
ratio Rh, also called robustness ratio (i.e., the total number of
extracted fragments over the total number of fragments).
Robust algorithms succeed to capture all fragment informa-
tion of a scene regardless of the coplanarity complexity
(i.e., Rh ¼ 1). On the other hand, approximate algorithms are
not guaranteed to extract all fragments (i.e., Rh � 1). The
main advantage of the latter is the superiority of the
performance over the robust methods at the expense of
higher memory space requirements.

We describe features and tradeoffs for each technique,
pointing out GPU optimizations, portability, and limitations
that can be used to guide the decision of which method to
use in a given setting.

3.1 Robust Algorithms

We introduce two robust solutions for peeling the entire
scene through a multipass rendering pipeline. The first one
extracts a maximum of two coplanar fragments per
iteration, implemented with a constant video-memory
budget. Each iteration carries out one or more rendering
passes depending on the algorithm. The second technique is
able to capture at once all fragments that lie at the current
depth layer before moving to the next one using dynamic
creation of per-pixel linked lists.

3.1.1 Extending F2B

Overview. The classic F2B method [12] proposed a solution
for sorting fragments by iteratively peeling off layers in
depth order. Specifically, the algorithm starts by rendering
the scene normally with a depth test, which returns the
closest per-pixel fragment to the observer. In a second pass,
previously extracted fragments are eliminated based on the
depth value extracted during the last iteration (pass)
returning the next nearest layer underneath. The iteration
loop halts either if it reaches the maximum number of
iterations set by the user or if no more fragments are

produced. Fig. 4 (top row, red colored boxes) illustrates the
consecutive color layers when depth peeling a duck model
in a F2B direction.

Unfortunately, fragments with depth identical to the
depth layer detected in the previous iteration are discarded
and thus not considered in the underlying application. We
introduce a robust coplanarity aware variation of F2B (F2B-
2P) by adapting the F2B algorithm so as to peel all
fragments located at the current depth before moving to
the next depth layer. The basic idea of this technique is to
use an extra rendering pass to count per pixel the
(nonpeeled) coplanar fragments at a specific depth layer.
To extract all coplanar fragments, we use the GPU
autogenerated primitive identifier (gl_PrimitiveID [29]) that
is unique per primitive geometric element and is inherited
downward to fragments produced by this primitive. To
decide, at iteration i, which fragments among the remaining
coplanar ones to extract, we store the minimum and
maximum identifiers (denoted as idimin and idimax, respec-
tively) of these fragments:

idimin ¼ minfidfg; idimax ¼ maxfidfg; 8 idf 2
�
idi�1
min; id

i�1
max

�
:

We define as nonpeeled a fragment f that has a primitive
identifier (denoted as idf) in the range of the identifiers
determined during the previous step i� 1. This strategy
guarantees that all coplanar fragments will survive since

id1
min < id2

min < � � � < id2
max < id1

max:

VASILAKIS AND FUDOS: DEPTH-FIGHTING AWARE METHODS FOR MULTIFRAGMENT RENDERING 3

Fig. 4. The color-buffer result of each extracted layer when depth peeling
is performed on a duck model using F2B, DUAL (top row), and BUN
(bottom row).

Fig. 3. A-Buffer realizations: (a) and (c) structures pack pixel fragments physically close in the memory avoiding random memory accesses of (b)
when accessing the entire fragment list. However, (a) allocates the same number of entries per pixel resulting at significant waste of storage and
possible fragment overflows.

Finally, a subsequent rendering pass extracts the fragment
information of the corresponding identifier and decides
whether the next depth layer underneath should be pro-

cessed by accessing the counter information. If the counter is
larger than 2, we have to keep peeling at the current layer
since there is at least one more fragment to be peeled.

GPU implementation. We use one extra color texture (with

internal pixel format RGBA_32F) to store the min/max
identifiers at the RG channels and the counter at the A
channel. Querying and counting for the identifier range and
the counter may be performed in one rendering pass using

32-bit floating point blending operations. When computing
the output color, two blending operations are used: MAX for
the RGB portion of the output color, and ADD for the alpha
value. To query the minimum identifier using maximum

blending, we store the negative identifier of the primitive.
A second rendering pass is employed to simultaneously

extract the fragment attributes and the next depth layer
exploiting multirender targets (MRT). Depth testing is again
disabled while the blending operation is set to MAX for all
components of the MRT. The custom (under blending) min
depth test is implemented adapting the idea of the min/
max depth buffer of DUAL [13] with the use of a color
texture (R_32F). If the counter is less or equal than 2, then
we have extracted all information in this layer. We move on
to the next one by keeping (blending) the fragments with
depth greater than the previously peeled layer. Otherwise,
we discard all fragments that do not match the processing
depth. The min and max color textures (RGBA_8) are
initialized to zero and updated only by the fragments that
correspond to the captured identifiers. The algorithm
guarantees that no fragment is extracted twice. Initially,
we render the scene so as to efficiently capture only the
closest depth layer before proceeding with the counter and
identifier computation pass.

The details of this method are shown in Algorithm 1,
where OUT.xxx denote the output MRT fields, IN.xxx the

input texture fields (initialized to zero), and FR.xxx the
attributes of each fragment.

Algorithm 1. F2B-2P Depth Peeling

/* 1st Rendering Pass using MAX Blending */

1: if FR.depth < � IN.depth then

2: discard ;

3: end if

4: OUT.color min (� IN.id min ¼¼ FR.id) ?

FR.color : 0:0 ;

5: OUT.colormax (IN.idmax ¼¼ FR.id) ?

FR.color : 0:0 ;

6: OUT.depth (IN.counter > 2 or� IN.depth 6¼
FR.depth) ? � FR.depth : �1:0;

/* 2nd Rendering Pass using MAX and ADD Blending */

1: if (IN.counter � 2 or FR.id 2 ð�IN.idmin; IN.idmaxÞ)
and (�IN.depth ¼¼ FR.depth) then

2: OUT.idmin �FR.id ;

3: OUT.idmax FR.id ;

4: OUT.counter 1:0 ;

5: else

6: discard ;

7: end if

Discussion. The drawback of this technique is the increase
of the rasterization work as compared to the original F2B
algorithm by a factor of 2. Moreover, the requirement for
per-pixel processing via blending may result to a raster-
ization bottleneck after multiple iterations.

Pre-Z pass [26] is a general rendering technique for

enhancing performance despite the additional rendering of
the scene. Specifically, a double-speed rendering pass is first
employed to fill the depth buffer with the scene depth
values by depth testing and turning off color writing.
Shading the scene with depth write disabled results on
enabling early-Z culling; a component which automatically

rejects fragments that do not pass the depth test. Therefore,
no extra shading computations are required.

We introduce the F2B-3P technique, an F2B-2P variant
which follows the above pipeline. The idea is to carry out
the first rendering pass of F2B-2P in two passes. A double-
speed depth rendering pass is performed to compute the
(next) closest depth layer. Then, by exploiting early-Z
culling, we perform counting and identifier queries by

enabling blending, turning off depth writing and changing
depth comparison direction to EQUAL. The difference from
the second pass of Algorithm 1 is that depth comparisons
inside the shader are not needed, thus minimizing the
number of texture accesses. Shading is performed in a
subsequent pass by matching the fragments of the extracted

identifier set without modifying pixel-processing modes
(blending or Z-test) of the previous pass. This modified
GPU-accelerated version uses the same video memory
resources and performs slightly better than its predecessor
in some cases despite the cost of the extra rendering pass.

3.1.2 Extending DUAL

Overview. DUAL depth peeling [13] increases performance
by applying the F2B method for the F2B and the back-to-

front directions simultaneously. Due to the unavailable
support of multiple depth buffers on the GPU, a custom
min-max depth buffer is introduced. In every iteration, the
algorithm extracts the fragment information which match
the min-max depth values of the previous iteration and
performs depth peeling on the fragments inside this depth
set. An additional rendering pass is needed to initialize

depth buffer to the closest and the further layers. Fig. 4 (top
row, blue-colored boxes) shows that the number of
rendering iterations needed is reduced to half when
simultaneous bidirectional depth peeling is used.

To handle coplanarity issues raised at both directions, we
have developed a variation of DUAL (DUAL-2P), which
adapts the F2B-2P algorithm for working concurrently in

both directions.
Discussion. Developing manually a min-max depth buffer

requires turning off the hardware depth buffer. Thus, we
cannot benefit from advanced extensions of the graphics
hardware in the DUAL workflow (such as the ones used for
F2B-3P). DUAL-2P depth peeling as compared to the F2B-
2P and F2B-3P variations reduces the rendering cost to half

by extracting up to four fragments simultaneously. The
burden for providing this feature is that it requires twice as
much memory space.

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

3.1.3 Combining F2B and DUAL with LL

Overview. Yang et al. [24] introduced a method to efficiently
construct highly concurrent per-pixel linked lists via atomic
memory operations on modern GPUs. The basic idea
behind this algorithm is to use one buffer to store all
linked-list node data and another buffer to store head offsets
that point the start of the linked lists in the first buffer. A
single shared counter (next) is atomically incremented to
compute the mapping of an incoming fragment, followed
by an update of the head pointer buffer to reference the last
rasterized fragment (see Fig. 3b).

Although fast enough for most real-time rendering
applications, the creation of these lists may incur a
significant burden on video memory requirements when
the number of fragments to be stored increases significantly.
We propose two efficient multipass coplanarity-aware
depth peeling methods (F2B-LL and DUAL-LL) by combin-
ing F2B and DUAL with LL. The idea is to store all
fragments located at the extracted depth layer(s) using
linked-list structures. Coplanarity issues can be easily
handled using this technique without wasting any memory.

GPU implementation.The rendering workflow of F2B-LL
consists of two passes: First, a double speed depth pass is
carried out enabling Z-buffering. Second, we construct
linked lists of the fragments located at the captured depth
by changing depth comparison direction to EQUAL and
turning off depth writing (which results at early-culling
optimizations).

The details of this method are shown in Algorithm 2,
where LL.xxx denote the linked list fields, IN.xxx the input
texture fields (initialized to zero), and FR.xxx the attributes
of each fragment.

Algorithm 2. F2B-LL Depth Peeling

/* 1st Rendering Pass using LESS/EQUAL Z-test

comparison */

1: if FR.depth <¼ IN.depth then

2: discard ;

3: end if

/* 2nd Rendering Pass using EQUAL Z-test comparison
*/

1: LL.next LL.nextþ1 ;

2: LL.head[LL.next] IN.head ;

3: LL.node[LL.next] FR.color ;

4: IN.head LL.next ;

// where denotes an atomic memory operation

Construction of a min/max depth buffer for DUAL-LL
disables depth testing, which results in an increase of the
number of texture accesses and per pixel shader computa-
tions. In the context of storage, one extra screen image is
allocated for the head evaluation of the back layer. To avoid a
slight increase of contention due to the extensive attempts of
accessing the shared memory area from both front and back
fragments, an additional address counter variable for
back layers is used (nextback). Conflicts between front and
back fragments are avoided by employing an inverse
memory mapping strategy for the fragments extracted in
the back-to-front direction. Specifically, we route them
starting from the end of the node buffer toward the beginning.

Discussion. The key advantage of these techniques over
the rest of the robust methods introduced in this paper is

that they can handle fragment coplanarity of arbitrary
length per pixel in one iteration. This results in a significant
decrease of the rendering workload. Practically, contention
from all threads trying to retrieve the next memory address
for accessing the corresponding data has been reduced
since coplanarity occurs only for a small number of cases as
compared to the original LL algorithm.

Despite the fact that order of thread execution is not
guaranteed, list sorting is not necessary since all captured
fragments are coplanar. Moreover, F2B-LL rendering pipe-
line is boosted by hardware optimization components. All
these lead to efficiently usage of GPU memory and
performance increase. Conversely, random memory ac-
cesses and atomic updating of next counter(s) from all
fragment threads may lead to a critical rasterization stall.
Finally, the necessity of atomic operations for GPU
memory—available only in the state-of-the-art graphics
hardware and APIs—makes it nonportable to other plat-
forms such as mobile, game consoles, and so on.

3.1.4 Combining BUN with LL

Overview. Liu et al. [14] presents a multilayer depth peeling
technique achieving partially correct depth ordering via
bucket sort on the fragment level. To approximate the depth
range of each pixel location, a quick rendering pass of the
scene’s bounding box is initially employed. Fig. 4 (bottom
row, green colored boxes) illustrates the peeling output for
each bucket for a scene divided into eight uniform intervals.

Despite the accurate depth-fighting feature of the above
proposed extensions, their performance is rather limited
when the depth complexity is high due to their strategy to
perform multiple iterations. Furthermore, as mentioned
above, LL may exhibit some serious performance bottle-
necks when 1) the total number of generated fragments
(storing process) or 2) the number of per-pixel fragments
(sorting process) increases significantly. To alleviate the
above limitations, we propose a single-pass coplanarity-
aware depth peeling architecture combining the features of
BUN and LL. In this variation, we uniformly split the depth
range of each scene and assign each subdivision to one
bucket. Then, we concurrently (in parallel) store all
fragment information in each bucket using linked lists.

GPU implementation. Due to the current shader restric-
tions, we can divide the depth range into five uniformly
consecutive subintervals. A node buffer (RGBA_8) is used to
store all linked-list fragment data from all buckets. We
explore a nonadaptive scheme where all buckets can handle
the same number of rasterized fragments. The location of
the next available space in the node buffer is managed
through five global unsigned int address counters
(½nextb0

; . . . ; nextb4
�). Each pixel contains five head pointers

(R_32UI), one for each bucket, containing the last node
(½headb0

; . . . ; headb4
�) it processed. Each incoming fragment

is mapped to the bucket corresponding to its depth value.
The address counter of the corresponding bucket is
incremented to find the next available offset at the node
buffer. The head pointer of the bucket is lastly updated to
point to the previously stored fragment. After the complete
storage of all fragments, a postsorting mechanism is carried
out in each bucket sorting fragments by their depth.

VASILAKIS AND FUDOS: DEPTH-FIGHTING AWARE METHODS FOR MULTIFRAGMENT RENDERING 5

Discussion. The core advantage of BUN-LL is the super-
iority in terms of performance over the rest of the proposed
methods due to its single-pass nature. BUN-LL is faster
than LL and exhibits time complexity comparable to SB and
FAB. However, unused allocated memory from empty
buckets as well as fragment overflow from overloaded ones
may arise for scenes with nonuniform depth distribution.

3.2 Approximate Algorithms

To alleviate the performance downgrade of multipass
techniques, we have explored per-pixel fixed-sized vectors
[17], [23] for capturing a bounded number of coplanar
fragments. The core advantage of this class of methods is
the superiority of performance in the expense of excessive
memory allocation and fragment overflow.

3.2.1 Combining F2B and DUAL with FAB/KB

Overview. Bounded buffer-based methods store fragment
data in a global memory array using a fixed-sized array per
pixel (see Fig. 3a). A per-pixel offset counter indicates the
next available address position for the incoming fragment.
After a complete insertion in the storage buffer, the counter
is atomically incremented.

We introduce a solution for combining FAB/KB with
F2B and DUAL (F2B-B, DUAL-B) to partially treat fragment
coplanarity. The idea is to adapt the previously described
core methodology of linked lists by exploiting bounded
buffer architectures for storage.

GPU implementation. Similar to FAB, constant length
vectors are allocated to capture the fragment data for each
pixel. In the case of DUAL-FAB, we have to allocate two
buffer arrays for front and back peeling at the same time.
Without loss of generality, we use the same length for both
buffers. To support efficiently this approach in commodity
hardware, we may employ a KB framework in place of FAB.
While KB is restricted by MRT to peel a maximum of eight
fragments, data packing may be used to increase the output
(and reduce memory cost) by a factor of 4. Note that there is
no need for presorting and postsorting, since we peel
fragments placed at same memory space (RMWH-free).

The details of combing F2B with KB and FAB are shown
in Algorithm 3, where A.xxx is used to define the fixed-size
data array, IN.xxx the input textures (initialized to zero),
FR.xxx the attributes of each fragment, and TMP.xxx the
temporary variables.

Algorithm 3. F2B-B Depth Peeling

/* using KB: F2B-KB */

1: for i ¼ 0 to A.length do

2: if A[i] ¼¼ 0 then

3: A[i] FR.color; break ;

4: end if

5: end for

/* using FAB: F2B-FAB */

1: TMP.counter IN.counterþ1 ;

2: IN.counter (TMP.counter ¼¼ A.length) ? 0 :

TMP.counter ;

3: A[TMP.counter�1].color FR.color ;

// where denotes an atomic memory operation

Discussion.The major advantage of this idea is that by
updating atomically only per-pixel counters no access of

shared memory is attempted, which results in significant
performance upgrade. Performance is degraded when KB is
used due to concurrent updates, but this is a useful option
when advanced APIs are not available. SRAB is a promising
option but in this context it is ruled out because it cannot
support MSAA, stencil and data packing operations. Note
that attribute packing except from extra memory require-
ments requires additional shader computations and im-
poses output precision limitations on fragment data (32 bit).

A simplified example that illustrates the peeling beha-
vior of the base methods and our proposed extensions is
shown in Fig. 5. The scene consists of three objects of
different color with the following rendering order: green,
coral, and blue resulting in the green having the smallest
and blue the largest primitive identifiers. A ray starting
from an arbitrary pixel hits the scene at three depth layers,
where three and two fragments overlap at the first and the
third layer, respectively.

3.3 GPU Optimizations for Multipass Rendering

The previous sections introduced extensions of the multi-
pass depth peeling algorithms to cope with coplanar
fragments. In this section, we propose an optimization
making use of various features of modern GPUs so as to
improve the performance when multipass rendering is
performed on multiple objects. Inspired by the occlusion
culling mechanism [27] (where geometry is not rendered

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 5. Overview of peeling results for our proposed methods and their
predecessors. Z0; Z1, and Z2 indicate the depth layers captured by ray
casting (black dashed line) and B0; B1; . . . ; B7 the uniformly distributed
buckets. Each column shows the produced output of each method for
the corresponding iteration: extracted fragment(s) painted with the color
of an object and coplanarity counters. Squares painted with more than
one color demonstrate z-fighting artifacts (is undefined which fragment
might win the z-test). To distinguish between fragments of the same
object, we have included their depth value to their associated square.

when it is hidden by objects closer to the camera), we
propose to avoid rendering objects that are completely
peeled from previous iterations. By skipping the entire
rendering process for a completely peeled object, we reduce
the rendering load of the following rendering passes.

Similarly to occlusion culling, we substitute a geome-
trically complex object with its bounding box. If the
bounding box of the object ends up entirely behind the last
captured contents of depth buffer, we may cull this object at
the geometry level (see Fig. 6). This is easily realized by
hardware occlusion queries. Due to the observation that
objects that are culled during a specific iteration will be
always culled in the successive ones, we reuse the results of
the occlusion queries from previous iterations [28]. This
leads to a reduction of the number of issued queries
eliminating CPU stalls and GPU starvation.

Finally, we avoid the synchronization cost between the
CPU and GPU required to obtain the occlusion query result,

be using conditional rendering [29]. Note that conditional
rendering can also be used to automatically halt the
iterative procedure of multipass rendering methods.

4 RESULTS

We present an experiment analysis of our extensions
focusing on performance, robustness, and memory require-
ments under different testing scenarios. For the purposes
of comparison, we have developed F2B2; a two-pass
variation of F2B that uses double speed Z-pass and early
Z-culling optimizations. Our methods successfully inte-
grate into the standard graphics pipeline and take
advantage of features such as multisample rendering,
GPU-based tessellation and instancing. Methods that do
not exploit the FAB or the LL structures can be used in
older hardware. All methods are implemented using
OpenGL 4.2 API and performed on an NVIDIA GTX 480
(1.5 GB memory). The shader source code has been also
provided as supplementary material, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2012.300.

We have applied our coplanarity-aware peeling variants
on several depth-sensitive applications (transparency ef-
fects, wireframe rendering, CSG operations, self-collision
detection, coplanarity detection) demonstrating the impor-
tance of accurately handling scenes with z-fighting (see
Figs. 12 and 13). We further provide a video demonstrating
the rendering quality of one of our robust variants (F2B-
FAB) for various coplanarity critical applications. The rest
of our robust variants yield similar visual results.

Table 1 presents a comparative overview of all multi-
fragment raster-based methods with respect to memory
requirements, compatibility with commodity and state-of-
the-art hardware, rendering complexity, coplanarity accu-
racy, and other features.

VASILAKIS AND FUDOS: DEPTH-FIGHTING AWARE METHODS FOR MULTIFRAGMENT RENDERING 7

Fig. 6. A sphere is efficiently culled and thus not needed to be rendered
for the remaining iterations because its bounding box lies entirely behind
the current depth buffer (thick gray line strips).

TABLE 1
Comprehensive Comparison of Multilayer Rendering Methods and Our Coplanarity-Aware Variants

4.1 Performance Analysis

We have performed an experimental performance evalua-
tion of all our methods against competing techniques using
a collection of scenes under four different configurations.
Except from the first scene that is evaluated under different
image resolutions, the rest of the tests are rendered using a
1;280� 720 (HD Ready) viewport.

4.1.1 Impact of Screen Resolution

Fig. 7 shows how the performance scales by increasing the
screen dimensions when rendering a crank model (10 K
primitives) whose layers varies from 2 to 17 and no
coplanarity exist. In general, we observe that our variants
perform slightly slower than their predecessors due to the
extra rendering passes (around 30 percent in average). Our
dual variants perform faster at low resolutions as compared
to the corresponding F2B ones because they need half the
rendering passes. Similar performance behavior moving
from low-to-high screen dimensions is observed between
F2B-2P and F2B-3P. GPU optimizations becomes meritor-
ious when image size is increasing rapidly.

FAB and SB are highly efficient in this scenario due to the
low rate of used pixels that require heavy postsorting of their
captured fragments. DUAL-FAB has the best performance
from all proposed multipass variants, which is slightly worst
than DUAL (from 6 percent (low resolution) to 18 percent
(high resolution)). However, it achieves speed regression by
a factor of 2 to 4 as compared to the SB and FAB methods,
respectively. This is reasonable since we iteratively render
the scene up to 18 times to extract all layers. We further
observe that DUAL-2P and DUAL-KB perform quite well in
low-screen resolution but exhibit significant performance
downgrade in the higher ones. Finally, rendering bottlenecks
appear in all LL-based methods when the resolution is
increased due to higher fragment serialization.

4.1.2 Impact of Coplanarity

Fig. 8 illustrates performance for rendering overlapping
instanced fandisk objects (1.4K primitives). We observe that
F2B-3P outperforms F2B-2P and DUAL-2P, enhanced by the
full potential of GPU optimizations. Similar behavior is
observed for F2B-FAB as compared to its corresponding
dual variation. Conversely, DUAL-LL performs better than
F2B-LL alleviating the increased fragment contention at
high instancing.

FAB extensions exhibit improved performance as com-
pared to constant-pass ones despite of they have to carry
out multiple rendering iterations. This is reasonable since
these buffers have to sort the captured fragments resulting
in a rendering stall. Finally, BUN-LL is slightly superior
than LL and SB, but again is not suitable for scenes with
high concentration of fragments in small depth intervals.

4.1.3 Impact of High Depth Complexity

Fig. 9 illustrates performance comparison of the constant-
pass accurate peeling solutions when rendering three
uniformly distributed scenes that consist of high depth
complexity: sponza (279K primitives), engine (203.3 K
primitives), hairball (2.85M primitives). We observe the
superiority of our BUN-LL over the LL and SB methods
regardless of the number of generated fragments due to the
reduced demands for per-pixel post-sorting of the captured
fragments. On the other hand, thread contention in the
BUN-LL storing process results at a performance down-
grade as compared with FAB when the rasterized fragments
are rapidly increased.

4.1.4 Impact of Geometry Culling

Fig. 10 illustrates how the performance scales when our
geometry culling is exploited at three representative F2B
peeling methods under a set of increasing peeling iterations
(similar behavior is observed for the rest variations). The
scene consists of three nonoverlapping, aligned at Z-axis,

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 7. Performance evaluation in FPS (log2 scale) on a scene where no
fragment coplanarity is present at different rendering dimensions. Our
FAB-based extensions exhibit slightly worse performance than their
base methods (10 percent in average). Rendering passes carried out for
each method are shown in brackets.

Fig. 8. Performance evaluation in FPS (log2 scale) on a scene with
varying coplanarity of fragments. FAB extensions outperform other
proposed alternatives and are slightly affected by the number of
overlapping fragments. Rendering passes performed for each method
are shown in brackets.

Fig. 9. Performance evaluation in FPS (log2 scale) on three uniformly
distributed scenes with varying number of fragments and high depth
complexity (shown in brackets, respectively). Our BUN-LL outperforms
the other buffer-based methods when the fragment capacity remains at
low levels.

dragon models (870 K primitives, 10 depth complexity). The
scene is rendered from a viewport that the third dragon is
occluded by the second one, which is similarly hidden by
the first. We observe that all F2B testing methods are
exponentially enhanced by the use of our early-z geometry
culling process when the number of completely peeled
objects is increasing. Note that when we have not
completely peeled any instance, the additional cost of our
culling process slightly affects performance (0.01 percent).

4.2 Memory Allocation Analysis

Fig. 11 illustrates evaluation in terms of storage consump-
tion for a scene with varying number of generated
fragments (defined by the combination of screen resolution,

depth complexity, and fragment coplanarity). An interest-
ing observation is the high GPU memory requirements of
FAB due to its strategy to allocate the same memory per
pixel. BUN-LL, LL, and SB require less storage resources by
dynamically allocating storage only for fragments that are
actually there. However, it will lead at a serious overflow as
the number of the generated fragments to be stored
increases rapidly.

On the other hand, our multipass depth peeling
extensions outperform the unbounded buffer-based meth-
ods even at high coplanarity scenes. We also observe that
robust F2B-2P and F2B-3P methods require slightly less
storage than the approximate F2B-KB. Video-memory
consumption blasts off to high levels, when data packing
is employed for correct capturing high fragment coplanar-
ity. Note that methods that exploit the F2B strategy require
less memory resources when compared to the dual-
direction ones. The same conclusions may be obtained
from the formulations of Table 1.

4.3 Robustness Analysis

4.3.1 Impact of Coplanarity

From Table 1, we observe that robust variations are able to
accurately capture the entire scene regardless of the depth
and coplanarity complexities. F2B and DUAL peeling reach
their peak when no coplanarity is present. However,
robustness is significantly downgraded due to their inability
to capture overlapping areas. Multipass bucket peeling and

VASILAKIS AND FUDOS: DEPTH-FIGHTING AWARE METHODS FOR MULTIFRAGMENT RENDERING 9

Fig. 10. Performance evaluation in milliseconds after F2B layer peeling a
scene without and with enabling our geometry-culling mechanism. The
number of completely peeled models for each peeling iteration is shown
in brackets.

Fig. 11. Robustness comparison based on memory allocation/overflow (log2 scale) of a scene with varying resolution and [depth, coplanarity]
complexity. Our variants does not consume more than the maximum storage of Nvidia GTX 480 graphics card (dashed line). Note the low
robustness ratio of the buffer-based solutions due to the memory overflow.

Fig. 12. Illustrating the image superiority of our extensions over the base methods in several depth-sensitive applications. (a) (top) Order-
independent transparency on three partially overlapping cubes with and without Z-fighting, (bottom) wireframe rendering of a translucent frog model
with and without Z-fighting. (b) CSG operations rendering without and with coplanarity corrections. (c) Self-collided coplanar areas are visualized
with red color.

its single-pass packed version present similar behavior.
Approximate buffer-based alternatives (maximum peeled
fragments: without packing (K ¼ 8) and with packing
(K ¼ 32)) are suitable to correctly handle up to 8 or 32
coplanar fragments. Peeling with KB, MultiKB, and SRAB
result at memory overflow (hardware restricted to 8 or 16 if
attribute packing is used) failing to capture more fragment
information. If the scene is presorted by depth, multiple
rendering with these buffers will improve robustness.
Finally, BUN-LL, FAB, LL, and SB perform robustly when
fragment storage does not result in memory overflow.

4.3.2 Impact of Memory Overflow

Fig. 11 shows the needed storage allocated by the memory-
unbounded buffer solutions under a scene with varying
number of generated fragments. Without loss of generality,
we assume that the percentage of pixels covered on the
screen is 50 percent and all pixels have the same depth
complexity. Robustness ratio is closely related to memory
allocation for these methods (see also Table 1). To avoid
memory overflow (illustrated by black markers), we have to
allocate less storage than we actually need leading at a
significant fragment information loss. BUN-LL, FAB, LL,
and SB robustness is significantly downgraded when the
number of generated fragments exceeds a certain point.
Conversely, we observe that our buffer-based extensions
perform precisely, allocating less than the maximum storage
of the testing graphics card under all rendering scenarios.

4.4 Discussion

FAB has the best performance in conjunction with robust
peeling but comes with the burden of extremely large
memory requirements. SB alleviates most of the wasteful
storage resources running at high speeds, but cannot avoid
the unbounded space requirement drawback. Both methods
necessitate per-pixel depth sorting resulting at comparable
frame rates with BUN-LL when the number of stored
fragments per pixel is high and uniformly distributed.

Multipass peeling with primitive identifiers is the best
option when accuracy and memory are of utmost impor-
tance. FAB extensions are shown to offer a significant speed
up over LL variations with satisfactory approximate (or
precise when coplanarity is maintained at low levels)
results. However, memory limitations should be carefully
considered. When modern hardware is not available, KB

variations might be used to approximate scenes with high
coplanarity in the entire depth range.

It is preferred to use F2B extensions for handling scenes
with low detail under high resolutions. On the other hand,
dual extensions performs better when rendering highly
tessellated scenes at low screen dimensions.

5 CONCLUSIONS AND FUTURE WORK

Fragment coplanarity is a phenomenon that occurs fre-
quently, unexpectedly and causes various unpleasant and
unintuitive results in many applications (from visualization
to content creation tools) that are sensitive to robustness.
Several (approximate or exact) extensions to conventional
single and multipass rendering methods have been intro-
duced accounting for coincident fragments. We have also
included extensive comparative results with respect to
algorithm complexity, memory usage, performance, robust-
ness, and portability. A large spectrum of multifragment
effects have been considered and used for illustrating the
detected differences. We expect that the suite of features
and limitations offered for each technique will provide a
useful guide for effectively addressing coplanarity artifacts.

Further directions may be explored for tackling the
problem of coplanarity in rasterization architectures. To
reduce bandwidth demand of the rendering operations and
increase locality of memory accesses, tiled rendering [30]
may be exploited. Determining the set of elements that are
not visible from a particular viewpoint, due to being
occluded by elements in front of them may affect the
performance of the multipass peeling methods [27], [28].
Finally, a hybrid technique [11] is an interesting option that
should be investigated further. To this end, one may seek a
modified form of peeling which efficiently captures a
sequence of layers when coplanarity is not presented
followed by on demand peeling of overlapping fragments.

REFERENCES

[1] “OpenGL SDK 10: Simple Depth Float,”C. NVIDIA, 2008.
[2] R. Herrell, J. Baldwin, and C. Wilcox, “High-Quality Polygon

Edging,” IEEE Computer Graphics and Applications, vol. 15, no. 4,
pp. 68-74, July 1995.

[3] M. Maule, J.L. Comba, R.P. Torchelsen, and R. Bastos, “A Survey
of Raster-Based Transparency Techniques,” Computers & Graphics,
vol. 35, no. 6, pp. 1023-1034, 2011.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 13. Image-based coplanarity detector. (left) Power plant (Rh ¼ 0:98; Cp ¼ 0:285), (middle) rungholt (Rh ¼ 0:9; Cp ¼ 0:48) and (right) castle
(Rh ¼ 0:88; Cp ¼ 0:81) scenes are visualized based on the total per-pixel fragment coplanarity: gray ¼ none, red ¼ 2, blue ¼ 3, green ¼ 4,
cyan ¼ 5, aquamarine ¼ 6, fuchsia ¼ 7, yellow ¼ 8, brown ¼ 9. Cp is the average probability for a pixel p to suffer from fragment coplanarity when
rendering with the F2B.

[4] F. Cole and A. Finkelstein, “Partial Visibility for Stylized Lines,”
Proc. Sixth Int’l Symp. Non-Photorealistic Animation and Rendering
(NPAR ’08), pp. 9-13, 2008.

[5] J. Rossignac, I. Fudos, and A.A. Vasilakis, “Direct Rendering of
Boolean Combinations of Self-Trimmed Surfaces,” Proc. Symp.
Solid and Physical Modeling (SPM ’12), 2012.

[6] S. Busking, C.P. Botha, L. Ferrarini, J. Milles, and F.H. Post,
“Image-Based Rendering of Intersecting Surfaces for Dynamic
Comparative Visualization,” Visual Computers, vol. 27, pp. 347-
363, May 2011.

[7] P.V. Sander, D. Nehab, and J. Barczak, “Fast Triangle Reordering
for Vertex Locality and Reduced Overdraw,” ACM Trans.
Graphics, vol. 26, no. 3, article 89, 2007.

[8] E. Sintorn and U. Assarsson, “Real-Time Approximate Sorting for
Self Shadowing and Transparency in Hair Rendering,” Proc. Symp.
Interactive 3D Graphics and Games (I3D ’08), pp. 157-162, 2008.

[9] D. Wexler, L. Gritz, E. Enderton, and J. Rice, “GPU-Accelerated
High-Quality Hidden Surface Removal,” Proc. ACM SIG-
GRAPH/EUROGRAPHICS Conf. Graphics Hardware (HWWS
’05), pp. 7-14, 2005.

[10] N.K. Govindaraju, M. Henson, M.C. Lin, and D. Manocha,
“Interactive Visibility Ordering and Transparency Computations
among Geometric Primitives in Complex Environments,” Proc.
Symp. Interactive 3D Graphics and Games (I3D ’05), pp. 49-56, 2005.

[11] N. Carr and G. Miller, “Coherent Layer Peeling for Transparent
High-Depth-Complexity Scenes,” Proc. 23rd ACM SIGGRAPH/
EUROGRAPHICS Symp. Graphics Hardware, pp. 33-40, 2008.

[12] C. Everitt, “Interactive Order-Independent Transparency,” tech-
nical report, Nvidia Corporation, 2001.

[13] L. Bavoil and K. Myers, “Order Independent Transparency with
Dual Depth Peeling,” technical report, Nvidia Corporation, 2008.

[14] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “Efficient Depth
Peeling via Bucket Sort,” Proc. First ACM Conf. High Performance
Graphics (HPG ’09), pp. 51-57, 2009.

[15] E. Sintorn and U. Assarsson, “Hair Self Shadowing and
Transparency Depth Ordering Using Occupancy Maps,” Proc.
Symp. Interactive 3D Graphics and Games (I3D ’09), pp. 67-74, 2009.

[16] A.A. Vasilakis and I. Fudos, “Z-Fighting Aware Depth Peeling,”
Proc. ACM SIGGRAPH, 2011.

[17] L. Bavoil, S.P. Callahan, A. Lefohn, J.L.D. Comba, and C.T. Silva,
“Multi-Fragment Effects on the GPU using the K-Buffer,” Proc.
Symp. Interactive 3D Graphics and Games (I3D ’07), pp. 97-104, 2007.

[18] K. Myers and L. Bavoil, “Stencil Routed A-Buffer,” Proc. ACM
SIGGRAPH, 2007.

[19] B. Liu, L.-Y. Wei, Y.-Q. Xu, and E. Wu, “Multi-Layer Depth
Peeling via Fragment Sort,” Proc. 11th IEEE Int’l Conf. Computer-
Aided Design and Computer Graphics, pp. 452-456, 2009.

[20] X. Yu, J.C. Yang, J. Hensley, T. Harada, and J. Yu, “A Framework
for Rendering Complex Scattering Effects on Hair,” Proc. ACM
SIGGRAPH Symp. Interactive 3D Graphics and Games, pp. 111-118,
2012.

[21] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “FreePipe: A
Programmable Parallel Rendering Architecture for Efficient Multi-
Fragment Effects,” Proc. ACM SIGGRAPH Symp. Interactive 3D
Graphics and Games, pp. 75-82, 2010.

[22] A. Patney, S. Tzeng, and J.D. Owens, “Fragment-Parallel
Composite and Filter,” Computer Graphics Forum, vol. 29, no. 4,
pp. 1251-1258, 2010.

[23] C. Crassin, “Icare3D Blog: Fast and Accurate Single-Pass A-
Buffer,” 2010.

[24] J.C. Yang, J. Hensley, H. Grn, and N. Thibieroz, “Real-Time
Concurrent Linked List Construction on the GPU,” Computer
Graphics Forum, vol. 29, no. 4, pp. 1297-1304, 2010.

[25] A.A. Vasilakis and I. Fudos, “S-Buffer: Sparsity-Aware Multi-
Fragment Rendering,” Proc. Eurographics Conf., pp. 101-104, 2012.

[26] E. Persson, “Depth in-Depth,” technical report, ATI Technologies,
Inc., 2007.

[27] D. Sekulic, “Efficient Occlusion Culling,” GPU Gems, pp. 487-203,
Addison-Wesley, 2004.

[28] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer, “Coherent
Hierarchical Culling: Hardware Occlusion Queries Made Useful,”
Computer Graphics Forum, vol. 23, no. 3, pp. 615-624, 2004.

[29] M. Segal and K. Akeley, “The OpenGL Graphics System: A
Specification of Version 3.3 Core Profile,” 2010.

[30] S. Tzeng, A. Patney, and J.D. Owens, “Efficient Adaptive Tiling for
Programmable Rendering,” Proc. Symp. Interactive 3D Graphics and
Games, p. 201, 2011.

Andreas-Alexandros Vasilakis received the
BSc and MSc degrees from the Department of
Computer Science, University of Ioannina,
Greece, in 2006 and 2008, respectively. He is
currently working toward the PhD degree in the
same department. His research interests include
character animation, GPU programming, and
multifragment rendering.

Ioannis Fudos received the diploma in compu-
ter engineering and informatics from the Uni-
versity of Patras, Greece, in 1990 and the MSc
and PhD degrees in computer science both from
Purdue University in 1993 and 1995, respec-
tively. He is an associate professor in the
Department of Computer Science at the Uni-
versity of Ioannina. His research interests
include animation, rendering, morphing, CAD
systems, reverse engineering, geometry compi-

lers, solid modeling, and image retrieval. He has published in well-
established journals and conferences and has served as reviewer in
various conferences and journals. He has received funding from EC, the
General Secretariat of Research and Technology, Greece, and the
Greek Ministry of National Education and Religious Affairs. He is a
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

VASILAKIS AND FUDOS: DEPTH-FIGHTING AWARE METHODS FOR MULTIFRAGMENT RENDERING 11

