Thin Client Access to a Visualization
Environment*

Toannis Fudos and Ioannis Kyriazis

Department of Computer Science, University of Ioannina,
GRA45110 Ioannina, Greece, {fudos, kyriazis}@cs.uoi.gr

Abstract. In this paper we present a thin client system that provides
Internet access to a modular visualization environment. The communi-
cation protocol for this system is designed so as to minimize the data
exchanged among the server and the clients. An XML format is intro-
duced for communicating visualization related information. Users of the
system may collaborate to perform complex visualization operations and
share files. The results of each operation are cached so that they may
be used by the same user in a later session or by other collaborating
users. Experimental performance results demonstrate the efficiency of
our system when compared with commercial general purpose solutions.

1 Introduction

Graphics visualization is a demanding computational task. To process and ren-
der a complex scene of 3D objects, computationally powerful platforms are re-
quired. We have designed a client-server system that provides remote access
to a visualization environment through Internet via a web browser. The sys-
tem is suitable for groups of collaborating users that need to perform complex
visualization related computations without having physical access to the same
machine. A number of research and commercial systems have dealt with similar
problems in the area of biology for MacroMolecular Modeling [6], meteorological
and oceanographical purposes [9,1,2], and for general purpose world wide web
applications[4, 5].
In this paper we present the following technical contributions:

— a reduced XML-based communication protocol for exchanging data visual-
ization information.

— a file caching scheme for intermediate results, which increases the perfor-
mance of the system and allows user collaboration.

— real time experiments that demonstrate the efficiency of our system over
commercial solutions.

* This work was partially funded by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-
2001- 32645 DBGlobe project and by a Greek Ministry of Education EPEAEK-
HERACLETUS Grant.

As a concrete example of the above we have implemented a thin client access
to MVE, a modular visualization environment [11].

The rest of this paper is organized as follows: Section 2 presents a short
overview of the system and describes the data exchange protocol. Section 3
presents the caching scheme which is used to increase efficiency and allow user
collaboration. Section 4 presents performance results.

2 Overview of the System

The system consists of three parts: The environment, which is responsible for all
the computations performed during a session, the thin client, a light weight front
end to the environment that allows users to access the environment remotely,
and the server, which accepts requests from clients and passes them as arguments
to the environment.

Our system uses the Modular Visualization Environment [11,10] to perform
computations. Its operation is based on a set of independent modules, which are
responsible for loading, modifying and rendering 3D graphics objects. Several
modules connected to each other can form a scheme, which can be saved or
executed. Each module is designed according to a common interface, regardless
of the function of this module. Each module has a set of inputs, which are objects
on which operations will be performed, a set of outputs which are the resulting
objects, and some parameters that define its behavior during the execution of the
operations. Thus modules can be represented by a data structure that describes
its inputs, outputs, and parameters. When a user has created a scheme, the
environment may store or execute this scheme. Execution of the scheme may be
performed on a single machine or on a distributed platform.

We have used XML as many standards for interoperable graphics and visual-
ization data are being developed in XML [8]. Also, there are portable parsers for
XML that allow for porting the server part of our system easily to any platform.
The client part is a plain java applet and is thus portable to any platform.

The server communicates with MVE by means of exchanging XML files.
When a new client connects to the server, the server will request from MVE the
list of available modules. As a response MVE will produce an XML file called
modules.xml, where all currently available modules are described. An example
of an XML file that contains the list of modules is shown in Figure 1 (left).
When a client wishes to execute a scheme, the server will provide a file to the
visualization environment with an XML description of the scheme (scheme.xml).
An example of a simple scheme described in an XML file is shown in Figure 1
(right). At startup, the client establishes a connection to the server and requests
the currently available list of modules. After receiving the modules list, the user
can develop a scheme. When ready, the client sends the scheme to the server
for execution. The scheme is executed, and the results are sent to the client
for visualization. Besides executing the scheme, the client may request to save
the scheme on the server’s shared folders, or to load a scheme from the server.
During a session, a client has to communicate with the server only to post a

<?xml version="1.0" encodin

<?xml version="1.0" encoding="iso-8859-1"
ndalone="no"?>
EM "scheme.dtd">

<!DOCTYPE
26 18:48:54,471 2001">

tionn T wom

"Modules\ Decim_module.dll"

gle Mesh Decimation Module">

"Reduction" TYPE="NUM" P
Percent of r tion" <MODULE

MANDATORY="FALSE"/>

<MODULE

Cow2.st1;FALSE"/>

<MODULE
</MODULE>
<MODULE NAM!

iangleSaver"
"Cow3.st1;FALSE"/>

</MODULES>
Data"> <CONNECT

TYPE-"STR"

to save triangles"

</SCHEME>

" DESCR="Triangles to Save"/>

Extractor" TYPE-"2"
_Modules.dll"
from Volumetric
(IsoExtractor) ">

" DESCR="Volumetric Data Input"/>
"Iriangle Data Output"/>

</MODULE>
</MODULES>

Fig. 1. (left) The modules.xml file; (right) the scheme.xml file

request for executing, saving or loading a scheme. No communication with the
server is required while developing a scheme. As shown in Figure 2 (left), the
information communicated among the server and the clients is minimized, as
the messages exchanged are few and short in length. This makes our system
appropriate for clients running on machines with slow network connections.

The server is the part of the system that connects the clients to the MVE,
and provides them with appropriate information whenever requested, whether
this involves calling the environment or not. As the server is multithreaded it
can serve many clients at the same time. A client may request from the server
to send the list of currently available modules, to execute a scheme and render
the results, to save a scheme, or to load a previously saved scheme. The server
also includes a login manager, which is responsible for user authentication and
identification, and handles the ownership and permissions of the schemes. This
way, a client may share a scheme with other users or groups, and set access rights
for its schemes. Besides the login manager, the server includes a cache manager,
which is responsible for caching the results of an execution, hashing the schemes
to organize the cached results, and searching the cached results to retrieve a
previously executed scheme. The client is designed as lightweight as possible,
and is able to execute on any java-enabled web-browser. No computations are
performed on the client machine, only some basic interaction with the server is
carried out. The execution of an operation is performed by the server. The client
performs only the visualization of the results. For user’s convenience, the GUI
of the client is similar to the MVE. Figure 2 shows messages exchanged during
a session, and a snapshot of the Internet client.

Server Client

Request list of fl== ey ~ |
call MVE M @
R |
T modulesxml

Create scheme

(b)

Visualize

call MVE

Scheme tosave _——— (c)

Requesta scheme for
loading

Send available

schemes (d)

Select a scheme:

Submit scheme
toclient | Load Scheme Tt

CEERCE R

Fig. 2. (left) The messages exchanged during a session: (a) request the list of Modules,
(b) execute a Scheme, (c) save a Scheme and (d) load a Scheme; (right) the Internet
Client

3 File Sharing, Caching and User Collaboration

When a client stores or loads a scheme, this scheme is actually stored on the
server’s site. These folders may contain other users’ schemes. This way, users
may collaborate by sharing their schemes. They also may form groups to share
their schemes only with the members of the same group. A login process is used
to identify and authenticate the client at startup. Then, when a scheme is stored,
it has an owner. Owners may choose to share their scheme with members of their
group, or to make it available to everybody. Like in a unix file system (UFS),
the files have an owner and a group, and the owner sets the mode of the file
for himself/herself, his/her group and others (read, write, execute for each such
category).

To reduce the workload of the server further, we cache results of a scheme
execution, so if a scheme has already been executed in a previous session, even
from a different user, it will not have to be executed again. Caching only the
final result of an execution would be useful only if the scheme for execution
matches the previously executed scheme exactly. Even if one parameter had
a different value, the cached results would be useless, as they would produce
different results. This is why we cache the intermediate results as well, so that
even partially matching schemes may use these results. Since the result of a
module execution is the same when the input and the parameters are identical,
even if the rest of the scheme differs we cache the result of each module seperately.
To locate a cached result, we use a hash table. The hash function [7,12] uses
the {module, input, parameter} set as input, and returns an entry in the hash
table for the output file. Figure 3 shows the structure of the hash function and
the hash table.

The module ID, along with its parameters and inputs are hashed as a whole,
and the hash output is stored along with the output of the execution. If there is
more than one output, each of them is stored separately, as they may be used
as different inputs for some other module. To distinguish among the different

h(module,input,parameters) = h(triangleloader, h(m, i, p):
(moduleName_Converted_to_Integer + cow.tri, false): > result02.tmp
. resultO1.tmp
input_Converted_to_Integer + —
parameters_ Converted_to_Integer) mod M h(decimation,
1 [> | resultOl.tmp, 80):
result03.tmp
M=u-m-m3.c-f-1.1-a where]
u the number of users PP 3900 s
h(m’,i’,p’): h(m”.i”,p”"):
m the number of modules 2> re£u110411)n3 2 A 4 r(esullOS Fm)
n/3 the average number of modules a specific module can connect to -mp mp
¢ the average number of connections per scheme —
f the number of input files h(trianglesaver,
1.1 the average number of inputs and outputs per module 3> result03.tmp,
a experimentally determined constant false):final.stl

Fig. 3. Details on the hash function and the hash table

outputs of the same hash bucket, we store the {module, input, parameter} set
as well. Since the input of each module was the output result of another module
execution, there is a result file for this input already, so we can use this file
instead of the input. The length of the hash table depends on the number of
users, the number of different modules, the average number of connections per
scheme, and the number of input files. If the table becomes very large, we remove
the least used entries. If M is the length of the hash table, we should not allow
more than 3M entries to be cached, as this increases the time to search a cached
result. We have determined experimentally an efficient size which is illustrated
in Figure 3. In order to locate the cached results in the database, the server
must first hash the clients scheme, to find the hash entries that may contain the
cached results. The modules that participate in a scheme are hashed from the
first to the last, and a hash entry is returned for each output. It is the server who
searches for cached results, as it is the one that has the necessary information
available. The client just sends the scheme to the server. The search is done
backwards so that we can find a matching result as soon as possible. If we find a
matching output, we use it as input to execute the rest of the scheme. The new
results of the execution are cached as well.

4 Performance Evaluation

We tested our prototype system and evaluated its performance under various
client, server, and network configurations.

In the first experiment, we compared the response time of our client-server
system with a popular commercial tool that provides access to the desktop of a
remote platform [3]. We measured the time it takes for the environment to start,
and the times to load, save and execute a specific scheme. As shown in Figure
4 (left), the response time for our client is relatively small, compared to the
commercial tool. OQur client performs well even over slow network connections,
as the messages exchanged between the client and the server are few and short.

In the second experiment, we measured the performance of our client in
various configurations concerning the state of the server and the sites where the

LAN Client Dialup Client
Time to: Normal | Normal | Network Traffic | Workload on server
receive Modules List 1750 210 4030 &7
56 kbps modem 100 Mbps LAN
parse XML string) 50 100 100
Commercial Our Client Commercial Our Client Startup 1910 2032 216 8201
T 13 sec 2130 ms 2 sec 1630 ms create module 0 0 0 0
Time to 6o 975 e 5 save scheme o 0 50 0
execute
e exee scheme 270 350 585 1010
2sec 10 ms About 1 sec 10ms
Scheme receive file's list o 130 370 3405
L) 2 sec 280 ms About 1 sec 130 ms Joad Targe scheme © 100 %0 750

Fig. 4. Results of the experiments

server and the client run, such as increased network traffic, low system resources,
and many clients connected on the server. The response times measured are the
times to save, load, and execute a scheme, as well as to receive the list of available
modules, and to startup the environment. As shown in Figure 4 (right), the time
to receive the list of modules is the main reason of delaying the initiation of the
client. The time to receive the modules is relatively long, because it takes the
server considerable time to generate the list.

References

1.
2.

10.

11.

12.

Ferret, data visualization and analysis. http://ferret.wrc.noaa.gov/Ferret/.
Geovista center, collaborative visualization. http://www.geovista.psu.edu/research/
collaborativevisualization/.

Symantec pcanywhere. http://www.symantec.com/pcanywhere/Consumer/.

L. Beca, G. Cheng, G.C. Fox, T. Jurga, K. Olszewski, M. Podgorny, P. Sokolowski,
and K. Walczak. Tango, a collaborative environment for the world wide web.
http://trurl.npac.syr.edu/tango/papers/tangowp.html.

L. Beca, G. Cheng, G.C. Fox, T. Jurga, K. Olszewski, M. Podgorny, P. Sokolowski,
and K. Walczak. Web technologies for collaborative visualization and simulatio.
http://trurl.npac.syr.edu/tango/papers/tango_siam.html.

M. Bhandarkar, G. Budescu, W.F. Humphrey, J.A. Izaguirre, S. Izrailev, L.V. Kalt,
D. Kosztin, F. Molnar, J.C. Phillips, and K. Schulten. Biocore: A collaboratory for
structural biology. In Proceedings of the SCS International Conference on Web-
Based Modeling and Simulation, pages 242-251, 1999.

J.L. Carter and M.N. Wegman. Universal classes of hash functions. Journal on
Computing Systems and Science, 18(2),79:143-154.

J. Ferraiolo, F. Jun, and D. Jackson. Scalable vector graphics. Technical Report
TR-11, SVG, 2002.

S. Franklin, J. Davison, and D.E. Harrison. Web visualization
and extraction of gridded climate data with the ferret program.
http://www.pmel.noaa.gov/ferret /ferret_climate_server.html.

M. Rousal and V. Skala. Modular visualization environment - mve. In Proceedings
of International Conference ECI 2000, pages 245-250, 2000.

V. Skala. The mve and complete programming documentation and user’s manual.
http://herakles.zcu.cz.

R. Sprugnoli. Perfect hashing functions: A single probe retrieving methods for
static sets. CACM, 20(11),77:841-850.

