

and Investment Fund

Barcelona

Co-financed by Greece and the European Union

A Characterization of 3D Printability

Ioannis Fudos, Margarita Ntousia, Vasiliki Stamati, Department of Computer Science & Engineering, University of Ioannina, <u>{fudos, mntousia</u>, <u>vstamati}@cse.uoi.gr</u>

Paschalis Charalampous, Theodora Kontodina, Ioannis Kostavelis, Dimitrios Tzovaras, Centre for Research and Technology Hellas, Information Technologies Institute, {<u>pcharalampous</u>, <u>kontodinazoli</u>, <u>gkostave</u>, <u>Dimitrios.Tzovaras</u>} @iti.gr

Leonardo Bilalis, 3D Life, leonardo.bilalis@3dlife.gr

Overview

Additive manufacturing (AM) technologies are considered as the spark of a new industrial revolution, due to its versatility in creating 3D structures of unprecedented design freedom and geometric complexity in comparison with conventional manufacturing techniques

Technical Contributions

Proposes a novel approach for a succesful 3D print of a CAD model on a specific AM technology based on model mesh complexity and certain part characteristics

Studies the number of triangles in the STL file

Compares volumes, bounding boxes of different triangulated models and calculates deviations

Examines the geometric charateristics of a model

Raising issues regarding:

- > Accuracy
- > Surface finish
- Robustness
- > Mechanical properties
- > Functional constraints
- \blacktriangleright Geometrical constraints

Evaluation of printability

Printability score = the probability of obtaining a robust and accurate end result for 3D printing on a specific AM machine

Final Result

Related work (1/2)

Types of complexity

CAD model	Component representation, features and relationships between them
Geometrical	Basic elements such as points, lines, surfaces, etc
Combinatorial	Number of elements of a model, number of vertices in a polynomial mesh, edges, faces
Dimensional	Characterization of a model as 2D, 2.5D or 3D
Algebraic	Complexity degree of the polynomials required to represent the exact shape of a model
Topological	3D geometries, models with internal structure, non-regularized shapes, holes, non-manifold singularities, self-intersections, genus, e.t.c
Morphological	Number of features of a shape, size, smoothness and regularity

- Number of surfaces
- Number of triangles in the STL file for component representation
- Comparison of the volume of a component with the volume of its bounding box

Other complexity metrics

20

Barcelona

MODEL AND PART CHARACTERISTICS THAT AFFECT PRINTABILITY (1/3)

CAD models used for analysis and validation

References [1, 5, 6, 17, 13]

Geometric Primitives printed using three AM technologies

MODEL AND PART CHARACTERISTICS THAT AFFECT PRINTABILITY (2/3)

Mesh Complexity

- 4 different mesh resolution (lowest to highest)
- Mean Curvature Analysis

 $10^{-5} m^3$

Bbox (cm)

Mesh complexity C of a CAD model M with a PLG(M) set of triangles

 $C_M = |PLG(M)|$

Triangular Mesh Volume ($10^{-5} m^3$)

Sphere D: 3 cm - Volume: 1.414

Overall mesh complexity for convex polygons p with u(p) vertices

$$C_M = \sum_{p \in M} u(p) - 2$$

	No of faces	\sim	X axis	Y axis	Z axis
- 8%	168	1.299	3.00	2.92	2.88
	1520	1.399	3.00	3.00	3.00
-	14640	1.412	3.00	3.00	3.00
0% -	148224	1.414	3.00	3.00	3.00
				\frown	

	B3 $V: 8,0$ cm & $H: 2,5$ cm & $D: 8,0$ cm- Volume: $9,534 \ge 10^{-5} m^3$						
	Triangular Mesh	Volume ($10^{-5} m^3$)		Bbo	x (cm)		
	No of faces		X axis	Y axis	Z axis		
- 1%	634	9.511	8.00	2.50	8.00		
	6382	9.534	8.00	2.50	8.00		
	44984	9.534	8.00	2.50	8.00		
0%	394682	9.534	8.00	2.50	8.00		

MODEL AND PART CHARACTERISTICS THAT AFFECT PRINTABILITY (3/3)

References [5, 19]

3D Life

rafting Perfection

I ENIC REPUBLIC

A CHARACTERIZATION OF 3D PRINTABILITY (1/4)

This work defines a measure that characterizes the	0 < printability score < 100 ,
printability <i>P</i> of a model <i>M</i> on a 3D <i>AM technology T</i>	where 0: print model failure
\rightarrow printability score	100: structurally robust model, print success

The printability score is defined by two factors:

1.Global probability function: $P_G(C_M, T, A)$ based on C_M : Mesh Complexity, T: AM Technology, A: Application

where $P_G(C_M, T, A) = print failure and (1 - P_G(C_M, T, A)) = print success$

2.Part characteristic probability function: P_F (i, D, T, A) based on i: part characteristic, D(i): set of characteristic parameters, T: AM Technology, A: Application where $P_{F}(i, D, T, A) = print failure and (1 - P_{F}(i, D, T, A)) = print success$

The overall probability of a model M with n number of part characteristics to be successfully printed on technology T is:

$$P(M,T) = (1 - PG(C_M,T,A)) * \prod_{i=1}^n (1 - PF(i,D,T,A))$$

The printability measure (score) of *M* on *T* is:

PS(M,T) = 100 * P(M,T)

A CHARACTERIZATION OF 3D PRINTABILITY (2/4)

Global Probability Function (1/2)

 $\Box P_{G}$ is related to the characteristics of the technology employed for printing

 \Box An initial **defect score** $DS_T^{Perfect}(x)$ is assigned to each characteristic x based on technical specifications of

each technology T and experimental technology assessment

 \Box DS_T^{Perfect}(x) expresses the probability of a characteristic x to cause a printing failure using the highest mesh resolution

A CHARACTERIZATION OF 3D PRINTABILITY (3/4)

Global Probability Function (2/2)

Defect score probability function $DS_{\tau}(x)$ of a technology printing characteristic x on technology T as:

 $DS_T(x) = 1 - (1 - DS_T^{Perfect}(x)) * QS_{CM}$ where $QS_{C_M} = Area(M) / Area(O)$

The global probability function P_G of a model *M* for an application *A* on a printing technology *T* is:

$$P_G(C_M, T, A) = 1 - \prod_{x \in S} (1 - DST(x) * k(x, A))$$

where S: set of global technology characteristics and $k(x,A) \in [0,1]$: factor for the sensitivity of application A to characteristic x • For k(x,A) = 0 not affected For k(x,A) = 1 fully affected

 \square P_{c} values expressing printability for different meshes of a sphere

		Glo	bal pro	bability functi	on:	$1 - P_G(C_M, Z)$	T, A)			
C_M	FDM	Binder J	letting	Material Jetti	ng	FDM	Binder Je	etting	Material Jetti	ng
168	0.97239246	0.97811	6384	0.981823174		0.867419752	0.893898	53	0.911550807	
1520	0.982638713	0.988553	3692	0.992496154		0.915394871	0.943702	897	0.962885818	
14640	0.983937057	0.98987	6312	0.993848738		0.921572972	0.950117	484	0.969498937	
148224	0.984078112	0.99002	0005	0.993995687		0.922245513	0.950815	781	0.970218865	
			Resu	ts for k=0.1				Resu	ults for k=0.5	

A CHARACTERIZATION OF 3D PRINTABILITY (4/4)

Part Characteristic Probability Function

□ For each design part characteristic *i* we determine a **part characteristic probability function (PCP function)** *P*_F with the following parameters

- Weight $w(T, i) \ge 0$, numerical parameter depends on T, i and is the dimension value of *i* that has probability 50% to exhibit a significant flaw during printing on T[5]
- Significance 0 < s(A,i) < 1 expresses the impact of i on the printed model regarding A

The PCP function (*P_F*) of a part characteristic that corresponds to thin parts or small holes can be described as:

$$P_F(i, d, T, A) = 1 - \left(\frac{1}{1 + ew^{(T,i)-d}}\right) * s(A, i)$$

where *i* is the characteristic under evaluation, *d* is its dimension (for holes and thin parts $D(i) = \{d\}$)

Parameters and Thresholds

- ➢ For printability score < 80% → model has a high chance of exhibiting structural robustness problems and undesired characteristics
- ➢ For printability score = 75% → only one out of four prints will fail due to any characteristic or design rule

Barcelon

VALIDATION OF THE PRINTABILITY MEASURE (1/4)

The evaluation of the proposed scoring method was performed using three different AM technologies:

- <u>FDM technology</u> → printer: Ultimaker 3 Extended, dimensional accuracy: 0.2–0.02mm (0.4mm nozzle), PLA as feedstock material
- <u>3DP technology (Binder Jetting)</u> → printer: ZCorp 450, dimensional accuracy: +/-0.102mm
- Polyjet technology (Material Jetting) → printer: Stratasys Connex3 Objet 260, dimensional accuracy: Up to 200µm (0.2mm)

Procedure

- ≻ Geometric primitives → printed 5 times and Benchmarks → printed 3 times, on each AM machine
- Printability score for each model on each T was calculated before printing with k= 0.1 for the P_G
- High sensitivity for holes and thin parts
- > For geometric primitives PCP function = 0 \rightarrow printability scores = P_G
- Printability scores of the benchmarks: PCP functions evaluated for thin walls, pins and holes
- > After printing and post processing, evaluation of the fabricated parts:
 - dimensional accuracy
 - structural robustness
 - surface quality

> Overall evaluation the printability scores of each model on each AM technology

			Printability Score ($k=0.1$)		(k = 0.1)
		Model	FDM	Binder Jetting	Material Jetting
Printability score for each model on each	<	Sphere	98.379%	98.973%	99.370%
, , , , , , , , , , , , , , , , , , ,		Cylinder	98.406%	99.000%	99.397%
technology for P _G		Torus	98.409%	99.004%	99.401%
For the benchmark models, PCP functions were		Rect. Parallelep.	98.406%	99.001%	99.398%
evaluated for thin walls, pins and holes	<	B1	22.110%	12.100%	28.425%
		B2	28.679%	17.592%	39.421%
		B3	86 998%	74 230%	86.025%

- × Sphere on FDM technology has a higher probability to display printing errors
- Cylinder, rectangular parallelepiped and torus have a printability score of over 99% on Polyjet technology and
 3DP
- × B1 had a lower printability score due to the presence of many thin parts whose dimensions were at or below the limits of the AM technologies

VALIDATION OF THE PRINTABILITY MEASURE (3/4)

Overall evaluation

B1 benchmark

B2 benchmark

B3 benchmark

	FDM	3DP	Polyjet
dimensional accuracy	 Larger on both XY and Z directions Warping 	 Smaller on XY directions (lower resolution of the machine on XY) Larger on Z Smallest deviation in Volume size 	 More accrate on both XY and Z directions Repeatability Consistency
structural robustness	 Support removal problem for thinner bridges (B1) Some holes printed not circular (B1) Overhangs with smallest angles not printed well (B2) Thinnest wall was successfully printed but with flaws (B2) Thin pin printed successfully (B2) Propeller of B2 (thin part) printed but cracked in post-processing 	 Thin bridges printed but broken in post-processing (B1) Thinnest wall was broken or presented warping in some cases (B2) Thin pin printed sucessfully but collapsed in post processing (B2) Propeller of B2 (thin part) printed successfully 	 Support removal problem for thinner bridges (B1) Thinnest wall was successfully printed (B2) Thin pin printed sucessfully (B2) Propeller of B2 (thin part) printed successfully
surface quality	 Rough parts Surface anomalies Hairs Uneven surfaces from material deposition 	 Slightly porous No anomalies Better level of detail 	Very smooth surfaceGood level of detail

4D'20 3D Life

VALIDATION OF THE PRINTABILITY MEASURE (4/4)

Evaluation of dimensional accuracy

Display of XY and Z deviations of printed sphere from original sphere mesh

Volume ratios of printed sphere models

	Ratio $l = V_M/V_A$					
Model	Polyjet	3DP	FDM			
Sphere-1	0.993682194	1.010465886	1.021082769			
Sphere-2	0.993433109	1.001674907	1.017535587			
Sphere-3	0.993433109	1.026164459	1.012230231			
Sphere-4	0.993682194	1.004181391	1.023875618			
Sphere-5	0.996175332	1.012230231	1.020068449			

<u>Comparison of the volume ratios for the parts</u> <u>fabricated on the three technologies</u>

Co-financed by Greece and the European Union

CONCLUSIONS - FUTURE WORK

Present Work	 Novel approach for characterizing the efficacy of manufacturing a CAD model on an AM machine of a certain technology, based on its model complexity and part characteristics These elements are mapped to parameters and functions, that depend also on the printing technology to be employed, that make up a linear formula that corresponds to a printability score By using worst case printing scenarios → determination of which 3D technology is more suitable for manufacturing a specific model or used as a guide for redesigning the model so that it is more suitable for an intended specific technology
Future Work	 Evaluation of more part characteristics and their impact on printability Evaluation of the volume ratios of the benchmark models with methods of photogrammetry and laser scanning to further validate our approach Also the proposed printing score system can be adapted to include other AM printing technologies and other design intents
	Ο 3 D ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
European Union European Structural ad Investment Frank	Some with the contraction of the

References

[1]3D Life: 3D Life: Crafting Perfection. http://www.3dlife.gr.

[2]Abshire, M.: 3d cad design for 3d printing - tips, tricks, techniques: Part 1 of 3.https://www.cati.com/blog/2018/05/3d-cad-design-3d-printing-tips-tricks-techniques-part-1//.
 [3]Adam, G.; Zimmer, D.: On design for additive manufacturing: evaluating geometrical limitations. Rapid Prototyping Journal, 21(6), 662–670, 2015.http://doi.org/https://doi.org/10.1108/RPJ-06-2013-0060.

[4]Booth, J.; Alperovich, J.; Chawla, P.; Ma, J.; Reid, T.; Ramani, K.: The design for additive manufacturing worksheet. Journal of Mechanical Design, 139, 2017.http://doi.org/10.1115/1.4037251.

[5]Brockotter, R.: Key design considerations for 3d printing. https://www.3dhubs.com/knowledge-base/key-design-considerations-3d-printing/.

[6]Decker, N.; Yee, A.: A simplified benchmarking model for the assessment of dimensional accuracy in fdm processes. International Journal of Rapid Manufacturing, 5(2), 145–154, 2015.

[7]Gibson, I.; Rosen, D.; Stucker, B.: Additive Manufacturing Technologies. Springer-Verlag New York, January 2015, 2015. ISBN 978-1-4939-2112-6, 978-1-4939-2113-3, 978-1-4939-4455-2.http://doi.org/10.1007/978-1-4939-2113-3.

[8]Globa, A.; Donn, M.; Ulchitskiy, O.: Metrics for measuring complexity of geometric models. Scientific visualization, 8(5), 74–82, 2016.

[9] Jee, H.; Lu, Y.; Witherell, P.: Design rules with modularity for additive manufacturing. In Proceedings of the Solid Freeform Fabrication Symposium, 2015.

[10]Kim, H.; Lin, Y.; Tseng, B.: A review on quality control in additive manufacturing. Rapid Prototyping Journal, 24, 645–669, 2018. http://doi.org/10.1108/RPJ-03-2017-0048.

[11]Mani, M.; Witherell, P.; Jee, H.: Design rules for additive manufacturing: A categorization. In ASME 2017International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 1–10, 2017.http://doi.org/10.1115/DETC2017-68446.

[12]Michael D. Johnson, L.M.V.; Thomison, W.D.: An investigation and evaluation of computer-aided design model complexity metrics. Computer-Aided Design and Applications, 15(1), 61–75, 2018.http://doi.org/10.1080/16864360.2017.1353729.

[13] Minetola, I.L., P.; G., M.: Benchmarking of fdm machines through part quality using it grades. Procedia CIRP 41, 1027–1032, 2016.

[14]Ntousia, M.; Fudos, I.: 3D printing technologies and applications: An overview. In Proceedings of the CAD2020 Conference, Singapore, 243–248, 2019.http://doi.org/10.14733/cadconfP.2019.243-248.

[15]Oropallo, W.; Piegl, L.A.: Ten challenges in 3d printing. Engineering with Computers, 32(1), 135–148,2016. ISSN 0177-0667.http://doi.org/10.1007/s00366-015-0407-0.

[16] Ramya, A.; Vanapalli, S.: 3d printing technologies in various applications. International Journal of Mechanical Engineering and Technology, 7(3), 396–409, 2016.

[17] Rebaioli, L.; Fassi, I.: A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes. International Journal of Advanced Manufacturing Technology, 93,2571–2598, 2017.

[18]Rossignac, J.: Shape complexity. Visual Computer, 21, 985–996, 2005.http://doi.org/10.1007/s00371-005-60362-7.

[19]Stamati, V.; Antonopoulos, G.; Azariadis, P.; Fudos, I.: A parametric feature-based approach to reconstructing traditional filigree jewelry. Computer Aided Design, 43(12), 1814–1828, 2011. ISSN 0010-4485.http://doi.org/10.1016/j.cad.2011.07.002.

[21]Tofail, S.A.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O'Donoghue, L.; Charitidis, C.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22–37, 2018. ISSN 1369-7021.http://doi.org/https://doi.org/10.1016/j.mattod.2017.07.001.

[24]Zhang, Y.; Bernard, A.; Gupta, R.; Harik, R.: Feature based building orientation optimization for additive manufacturing. Rapid Prototyping Journal, 22(2), 358–376, 2016.http://doi.org/https://doi.org/10.1108/RPJ-03-2014-0037.

Co-financed by Greece and the European Union