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Abstract

Mesh parameterization is central to a broad spectrum of applications. In this paper, we present a novel approach
to spherical mesh parameterization based on an iterative quadratic solver that is efficiently parallelizable on modern
massively parallel architectures. We present an extensiveanalysis of performance results on both GPU and multicore
architectures. We introduce a number of heuristics that exploit various system characteristics of the underlying archi-
tectures to speed up the parallel realization of our algorithms. Furthermore, we demonstrate the applicability of our
approach to real-time feature detection, mesh decomposition and similarity-based 3D object retrieval. Finally, we offer
visual results and a demonstration video.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.1]: Hardware Architecture—
Parallel processing Computer Graphics [I.3.5]: Computational Geometry and Object Modeling—Curve, surface, solid,
and object representations Computer Graphics [I.3.m]: Miscellaneous—Mesh parameterization

1. Introduction

Fast mesh parameterization is central to many applica-
tions such as remeshing, filtering, texture mapping, com-
pression, mesh completion and morphing. The surface
that the mesh is parameterized on is typically referred to
as the parameter domain. The purpose of mesh parame-
terization is to obtain a piecewise linear map, associating
each triangle of the original mesh with a surface patch
of the domain. An important goal of parameterization is
to obtainbijective (invertible)maps, where each point on
the domain corresponds to exactly one point of the mesh.
The bijectivity of the map guarantees that there is no tri-
angle flipping or overlapping.

Since the geometric shape of the domain surface
patches will typically be different than the shape of the
original triangles, angle and area distortion is introduced.
The distortion of the parameterization is an important fac-
tor, therefore applications typically try to minimize the
distortion for the whole mesh. Maps that minimize the
angular distortion are calledconformal, maps that min-
imize area distortion are calledauthalic, and maps that
minimize distance distortion are calledisometric.

In this work, we deal with the problem of computing
a bijective mapping between a closed genus-0 mesh and
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a spherical domain, such that distortion is globally min-
imized. It is important to note that on such a domain,
an arbitrary mesh mapping can beauthalic, or conformal
but notisometric, as it would have to be both authalic and
conformal and in general this is not feasible.

Although mainly due to recent fundamental theoretical
work [13, 3, 4, 38, 43, 21, 39, 9], there is a good under-
standing of the mathematical aspects underlying spher-
ical mesh parameterizations, the problem of computing
such parameterizations efficiently remains open.

The existing spherical mesh parameterization methods
can roughly be classified into two categories : (i) methods
that attempt to extend planar methods and (ii) methods
that use some kind of non-linear optimization. Typical
methods of the former category generalize planar param-
eterization methods of barycentric coordinates [45] to the
spherical domain [3, 25, 23]. For example in the work
of Haker et al. [23] the non-linear spherical problem is
transfered to the disk and then the stereographic projec-
tion is used to obtain the spherical mapping. Other meth-
ods in this category proceed by splitting the mesh in two
half-meshes and mapping each half individually onto a
hemisphere [25].

Amongst the latter category, several methods use non-
linear optimization [13, 38, 21] and usually have a higher
computational cost. An indicative example of this cate-
gory is the work by Praun and Hoppe [38] that combines
a hierarchical method with the optimization of a stretch
metric to obtain geometric images of closed meshes. An-
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other method following a hierarchical approach to obtain
an approximate solution was introduced by Birkholz [11].
Firstly, the original mesh is simplified by using an edge-
collapse technique until a tetrahedron is obtained. After-
wards, the simplification process is reversed by reinsert-
ing the vertices.

Another method which does not fall directly in either
category, is presented by Gu and Yau [22] where the pa-
rameterization is based on the properties of the complex
conformal gradient field. This method has also the advan-
tage of being able to handle higher genus meshes.

The extension of planar methods to the spherical do-
main is attractive, since planar parameterizations require
the solution of a simple linear system. However, they
are usually required to introduce some cuts in the mesh.
Such cuts induce distortion that may be undesirable for
most applications.

Therefore, the generalization of planar barycentric
mapping to the spherical domain is important. The
weights assigned to the vertices offer some degree of con-
trol over the final parameterization and it is guaranteed
that the final parameterization will be fold free provided
that the weights are positive. Nevertheless, earlier fast
methods by Alexa [3] that attempt to converge to valid
barycentric parameterizations by employing simple pro-
jectedGauss-Seideltechniques are bound to fail in certain
cases [39]. More recently, approaches that combine var-
ious techniques from the above-mentioned parameteriza-
tion methods have appeared (e.g. the work by Saba et al.
[39]). Still, they need several minutes to calculate param-
eterizations for a typical, by today’s standards, model. In
addition, prior methods do not consider the issues arising
from a parallel implementation.

This paper makes the following technical contribu-
tions:

• Introduces a novel iterative quadratic solver for
spherical mesh parameterization.

• Presents an efficient parallel implementation along
with a number of heuristics that speed up signifi-
cantly the parallel realization on modern hardware.

• Demonstrates the usefulness of the parallel mesh pa-
rameterization algorithm in several applications that
exploit mesh morphology analysis.

The rest of the paper is organized as follows. Sec-
tion 2 offers some background material on planar pa-
rameterizations and spherical parameterizations that use
reduction to the planar case. Section 3 presents our it-
erative quadratic solver for spherical mesh parameteri-
zation. Section 4 describes our parallel implementation
along with an experimental study and several heuristics

that speedup the parallel realization on modern architec-
tures. Section 5 presents applications of our technique
on automated feature selection, mesh decomposition and
similarity-based object retrieval. Section 6 offers conclu-
sions.

2. Preliminaries

2.1. Planar Parameterizations

A planar triangulationis a simple triangulated plane
graph the edges of which are represented by straight lines.
The triangulation is calledvalid when the only intersec-
tions between its edges are at the common endpoints. It
is known by Fary [16] that every planar graphG has a
valid straight line representation. Therefore, for any pla-
nar graph there exist a set of pointsp such that the in-
duced triangulated graphT(G, p) is valid. A way to con-
struct such a graph is described by Tutte [45]. The bound-
ary vertices ofG are mapped to a convex polygon with the
same number of vertices and in the same order. Then, the
interior vertices are placed such that each vertex is the
centroid of its neighboring vertices. This was extended
by Floater [17] who has proven that the vertices can be
any convex combination of its neighboring vertices.

vi =
∑

j∈Ni

wi j v j

∑

j∈Ni

wi j = 1

wi j > 0

(1)

Consequently, for finding a one-to-one bijective map-
ping for a mesh with an open boundary to a convex para-
metric domain (unit disk, unit square), a sufficient condi-
tion is to find a set of positive weights that satisfy (1) and
solve the corresponding linear system for those weights.
The resulting system has always a unique solution pro-
vided that the boundary vertices are fixed. A straightfor-
ward choice is to choose equal weights so that each vertex
represents the centroid of its neighbors. This is also re-
ferred to as barycentric mapping.

Though through this process a valid triangulation can
always be created with no folded triangles, it is generally
desirable that the resulting mapping minimizes a distor-
tion metric that is related with some distinct shape char-
acteristics of the original mesh.

Two possible sets of weights are described by Desbrum
et al. [14] that produceauthalic andconformalparame-
terizations. Nevertheless, these weights might be nega-
tive when the polygon is not convex [18]. Thus, although
the final parameterization isconformalor authalicit may
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contain folded triangles. In addition, since the weights are
not positive, the corresponding linear system may be sin-
gular. To overcome this limitation for conformal weights
we can clamp the angles between 0o and 90o degrees and
therefore have strictly positive weights. Another possi-
ble set of weights are themean valuecoordinates intro-
duced by Floater [18]. These weights are not symmetric
(wi j , w ji ).

2.2. Spherical Parameterization by Reduction to the Pla-
nar Case

The methods for planar parameterizations [48] can be
directly extended to a spherical domain by reducing the
spherical parameterization problem to the planar case. A
first approach to reducing the problem is to select two
vertices as the poles (north and south) of the parameteri-
zation. Subsequently, a geodesic path must be established
between the poles over the mesh surface. The path con-
necting the two poles defines the boundaries of the pa-
rameterization and thus the spherical surface can be con-
verted to a unit disk. If equal weights are chosen and
the poles are selected based on the largest distance along
thez direction in object space, the resulting system is the
linear system proposed by Brechbuhler et al. [13]. This
approach yields a valid spherical parameterization for ev-
ery mesh. Nevertheless, the choices for the poles and the
path directly affect the quality of the parameterization.

Moreover, it turns out that selecting a good path is a
difficult problem on its own and usually there is severe
distortion in the final parameterization. The underlying
issue is that the mapping of a set of boundary vertices to
a fixed convex polygon is far from trivial. This is due to
the fact that in most cases the boundary vertices do not
form a convex polygon. Therefore, the obtained parame-
terizations exhibit high deformation. To tackle these dif-
ficulties Lévy et al. [31] construct parameterizations with
free boundaries. Nevertheless, the seams introduced by
the cuts in the mesh may be undesirable for certain appli-
cations.

A second approach to reduce the problem is to cut
out a triangle from the mesh, leaving an open boundary,
and to make the mesh homeomorphic to the unit disk.
This approach, also referred to in the literature as stereo
mapping, usually results in heavily distorted parameter-
izations since using the corresponding unit triangle as a
boundary tends to cluster the remaining vertices in the
center of the triangle.

3. Spherical Parameterizations

The main drawback of extending the planar method-
ologies to the spherical domain is the unnecessary distor-
tion introduced in the parameterization. Therefore, it is

advantageous to directly parameterize the meshes on the
spherical domain to allow seamless continuous parame-
terizations of genus-0 meshes. Unfortunately, generaliz-
ing the barycentric coordinates and the planar parameteri-
zation theory to a spherical domain is not straightforward.
Since the domain is non-planar, expressing a vertex on
the sphere as a convex combination of its neighbors is in
general not feasible. This would imply for example that
if the neighbors of a vertex are co-planar, then the vertex
should also lie on the same plane. Nevertheless, the math-
ematical aspects of the parameterization on the spherical
domain have received increasing attention in the last few
years. One important observation according to Gotsman
et al. [21] is the following:

Theorem 1. If each vertex position is expressed as some
convex combination of the positions of its neighbors pro-
jected on the sphere (2), then the formed spherical trian-
gulation is valid.

vi =

∑

j∈Ni
λi j v j

||
∑

j∈Ni
λi j v j ||

∑

j∈Ni

λi j = 1

λi j = λ ji

λi j > 0

(2)

The spherical triangulation may be controlled by
choosing a proper set of symmetric weights, similarly to
the planar case. The system of equations (2) can also be
expressed as a set of non-linear equations for the nodes
i = 1, ..., n of a mesh, seeking solution for the positions
of the vertices (xi , yi, zi) and then auxiliary variablesai ,

ai xi −
∑

j∈Ni

λi j x j = 0

aiyi −
∑

j∈Ni

λi j y j = 0

aizi −
∑

j∈Ni

λi j zj = 0

x2
i + y2

i + z2
i = 1

(3)

The physical interpretation of the equations (3), assum-
ing that the weightsλi j correspond to spring constants,
is the minimization of the sum of the squared weighted
lengths (spring energy) subject to the vertices being on
the sphere. Therefore, the energy that is minimized is:

E(v1, v2, ..., vn) =
1
2

∑

(i, j)∈E

λi j ||vi − v j ||
2

(4)
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Generally, a solution of this system is not unique.
Without restricting some degrees of freedom, there may
be infinite solutions due to the possible rotations over the
sphere. More importantly, there are degenerate solutions
that satisfy (3). The most obvious one is observed when
ai = 0 where all the vertices of the parameterization col-
lapse to one point on the sphere. Another possible degen-
erate solution can occur when the mesh contains a Hamil-
tonian cycle and the vertices are mapped to the equator
of the sphere. Other degenerate solutions have been pre-
sented (for example by Gotsman et al. [21]).

Moreover, even a robust and stable non-linear solver
may calculate degenerate solutions for the system of
equations (3). A key observation that sheds light on this
situation, is that as the solver iterations proceed, some
triangles start growing and eventually pass through the
equator of the sphere. The fundamental problem is that
the spherical energy minimum occurs at a collapsed con-
figuration, since the area of a planar triangle is always
smaller than the area of the corresponding spherical tri-
angle. Such cases are problematic, because there is an
estimation error introduced in the calculation of the dis-
tortion metric over the surface. This error increases dis-
proportionately with the size of the triangles. Therefore,
the non-linear optimizer may minimize the correspond-
ing distortion metric (energy function) over the sphere
surface by increasing the size of the triangles with the
largest error.

One way to avoid these degenerate solutions is to con-
strain three or more vertices, thus constraining the solver.
However, in practice there are two problems: (i) the extra
constraints introduce additional distortion in the param-
eterization, making the determination of a proper set of
constrained vertices difficult, (ii) in addition, without pay-
ing special attention to the set of the constrained vertices,
the non-linear problem may become infeasible.

3.1. An energy decreasing algorithm

Summarizing the above observations, if we try directly
to solve (3), the following problems occur,

• Non convexity. The constraintsx2
i + y2

i + z2
i = 1 are

not convex. Therefore classical convex minimiza-
tion cannot be used directly.

• Non uniqueness. The energy does not have a unique
minimum and degenerate solutions always exist.

• High computation cost. Due to the above reasons,
the usual approach of non-linear optimization has a
high computation cost.

An approach to tackle these difficulties was proposed
by Friedel et al. [19]. Here a penalty termd−2

min, wheredmin

is the minimum distance of each triangle from the sphere
center, was added in the corresponding planar quadratic
energy and therefore there is no need to constrain any ver-
tices or reproject the solution to the sphere. The moti-
vation of this approach is to provide an upper bound of
the spherical energy by scaling the corresponding planar
energies of the triangles. Therefore, the corresponding
problem (3) is transformed to an unconstrained one, that
can be solved with standard methods.

Another possible approach to overcome the high com-
putation cost is to use iterative procedures that attempt
to converge to a valid parameterization by applying lo-
cal improvement (relaxation) [3]. The idea is to reduce
the spring energy of the points with Laplacian smoothing
ignoring the sphere constraint and renormalise the solu-
tion to obtain valid spherical points. However, these algo-
rithms are heuristic based and there is no guarantee that
they will terminate. In practice, the iterative process can
collapse and may require a restart. Furthermore, the ter-
mination criteria for such an algorithm are difficult to de-
fine. For example, a similar method is used by Saba et al.
[39] to calculate an initial guess for the solution. How-
ever, the residual reduction criterion proposed to termi-
nate the method is usually too conservative and the ini-
tial guess is far away from the solution. Thus, there is
the need to complement it with a non-linear optimization
step.

Moreover, techniques that rely upon non-linear soft-
ware need to devise new parallel solutions and strategies
to conform to new parallel architectures. For this rea-
son, the effectiveness of all the techniques relying upon
non-linear optimization is limited on inherently parallel
architectures like modern GPUs.

To efficiently employ iterative procedures, a central is-
sue is the renormalization step. The iterative procedure to
solve the problem with an energy decreasing step and the
renormalization of the solution can be described through
the following steps:

1. Let verticesv0
1, ..., v

0
n be an initial guess for the solu-

tion

2. For j = 0 . . . until convergence

(a) Findv j+1
1 , ..., v

j+1
n such thatE(v j+1

1 , ..., v
j+1
n ) ≤

E(v j
1, ..., v

j
n)

wherev j+1
i may not belong to the sphere

(b) Setv j+1
i =

v j+1
i

||v j+1
i ||

for i = 1, ..., n

The question that arises is whether the energy is still
decreasing after the renormalization step and whether the
algorithm converges to a solution of (3). The problem
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is the unknown behavior of the energy after the normal-
ization. In other words, the gain obtained by the energy
decreasing step can be lost during renormalization.

It is therefore evident that the extension of iterative
schemes in the spherical domain is not straightforward.
A useful observation for the energy is the following,

Proposition 1. If vi ∈ R
3 and ||vi || ≥ 1 for the nodes

i = 1, ..., n of the mesh, thenvi
||vi ||

is on the sphere surface
and moreover for the energy (4) with barycentric or con-
formal weights :

E(
v1

||v1||
, ...,

vn

||vn||
) ≤ E(v1, .., vn) (5)

P. First we observe that∀(i, j) :

||
vi

||vi ||
−

v j

||v j ||
||2 ≤ ||vi − v j ||

2

||vi || ≥ 1

||v j || ≥ 1

(6)

Therefore, by the definition of the energy (4), and
because the barycentric and the (clamped) conformal
weights [14] are positive, moving each vertex to the
sphere cannot increase any term of the summation.
The above observation motivates the following iterative
procedure,

1. Let verticesv0
1, ..., v

0
n be an initial guess for the solu-

tion

2. For j = 0 . . . until convergence

(a) Find v j+1
1 , ..., v

j+1
n such thatE(v j+1

1 , ..., v
j+1
n ) ≤

E(v j
1, ..., v

j
n)

subject tov j+1
i · v j

i = 1

(b) Setv j+1
i =

v j+1
i

||v j+1
i ||

for i = 1, ..., n

At each iteration, we seek a solution that minimizes the
energy function subject to the constraint that the new ver-
tices should be coplanar with the vertices in the previous
iteration. Thus, the nonlinear constraints are converted to
linear ones. Furthermore, the energy is decreasing after
the renormalization step since||v j+1

i || ≥ 1. For the cases
of barycentric and conformal quadratic energy functions,
the energy minimizing problem in step 2(a) is a saddle
point problem.

Saddle point problem solution

We first present an iterative process for solving the
generic saddle point problem and then we reduce our
problem to this process. Consider the block 2x2 linear
system of the form,

(

A B
BT 0

) (

u
v

)

=

(

r
q

)

A ∈ R
n×n
, B ∈ R

n×m
, n ≥ m

(7)

It is known that the solution of the linear system is
equivalent to minimizing a functionf subject to a set of
m linear constraints [10],

min
u

f (u) =
1
2

uTAu− uTr

s.t. BTu = q
(8)

When A is a symmetric positive semidefinite matrix,
this equality-constrained quadratic problem describes a
(generalized) saddle point problem. In this case the vari-
ablev represents the vector of Lagrange multipliers. Any
solution (u∗, v∗) of (7) is a saddle point for the Lagrangian

L(u, v) =
1
2

uTAu− rTu+ (Bx− q)Tv (9)

where a saddle point (u∗, v∗) ∈ R
n+m satisfies

L(x∗, y) ≤ L(u∗, v∗) ≤ L(u, v∗), u ∈ R
n andv ∈ R

m (10)

Under the following conditions there is a solution to
the system (7) and it is unique,

Theorem 2. Let,

1. A be a real symmetric positive semi-definite n× n
matrix

2. B be a real n×m matrix with full column rank

3. A and BT have no nontrivial null vectors in common

Then (7) has a unique solution for u,v.

P. See Theorem 2 by Benzi et al. [10].

Given a non zero vectoru0 and assuming a splitting of
the matrixA = M − N, an iterative scheme to solve (7) is
the following,

(

M B
BT 0

) (

uk+1

vk+1

)

=

(

N 0
0 0

) (

uk

vk

)

+

(

r
q

)

(11)

Therefore to solve (7) a procedure is,

1. SolveMũk+1 = Nuk + r

2. Solve (BTM−1B)vk+1 = BT ũk+1 − q

3. SolveM(uk+1 − ũk+1) = −Bvk+1
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If A = D − L − LT , whereD is a nonsingular diagonal
matrix andL is a strictly lower triangular matrix, then the
iterative scheme is convergent for the following choices
of M andN [15],

M =
1
ω

D,N =
1− ω
ω

D + L + LT (12)

with ω > 0 so small that2
ω

D − A is a positive definite
matrix.

M =
1
ω

D − L,N =
1− ω
ω

D + LT (13)

with 0 < ω < 2.

(12) and (13) are the usualJacobiand Gauss-Seidel
iterations with over relaxation parameterω.

To map our problem to (11), we first establish some
necessary notation. Without loss of generality, we as-
sume that some vertices are fixed on the sphere and those
are numbered last. Therefore, letn andb represent the
number of free and fixed vertices respectively. Next, we
define the weightedm×mblock matrixΛ for the vertices
of the mesh,















































∑m
j w1 j I3 −w12I3 · · · −w1mI3

−w21I3
∑m

j=1 w2 j I3 −w2mI3

...
...

. . .
...

∑m
j=1 wm−1 j I3 −wm−1mI3

−wm1I3 −wm2I3 · · · −wmm−1I3
∑m

j=1 wm jI3















































where m = n + b, wi j is the weight (conformal or
barycentric) of the edge connectingi and j vertices, andI3

is the 3×3 identity matrix. Moreover,wi j = 0 iff (i, j) < E.
In addition,E,V denote the edges and the vertices of the
mesh, and (xi , yi , zi) are the coordinates of theith ver-
tex of the mesh. We further denote byΛ̃ = [AU ,AC]
the matrix that is derived fromΛ by deleting its last 3b
rows.AU contains all of the weights corresponding to the
free vertices and is an 3n× 3n matrix, AC contains all of
the weights corresponding to the fixed vertices and is an
3n× 3b matrix.

We use the following matrices to minimize the
quadratic energies for barycentric, and conformal mesh
mappings,

A := AU ,A ∈ R
3n×3n (14)

B :=



































































































x1

y1 0
z1

. . .

. . .

. . .

xn

0 yn

zn



































































































, B ∈ R
3n×n (15)

Furthermore, we have the vectors,

uk = [xk
1, y

k
1, z

k
1, ..., x

k
n, y

k
n, z

k
n]T
, uk ∈ R

3n (16)

r = −AC[xn+1, yn+1, zn+1, ..., xn+b, yn+b, zn+b]T
, r ∈ R

3n

(17)

q = [1, ..., 1]T, q ∈ R
n (18)

using the splitting ofA, M = 1
ω

D andN = 1−ω
ω

D+ L+ LT

(Jacobi iteration) we observe thatBT M−1B = ωD (since
the vertices are on the sphere). Furthermore, assuming
that we use the normalized weights at each vertex, the
iterative procedure becomes,

Algorithm 1 Iterative Saddle point solution
1: for k=0 until convergencedo
2: for i=1 until n do
3: [ x̃i , ỹi , z̃i ] = (1 − ω)[xk

i , y
k
i , z

k
i ] +

ω(
∑n

j=1, j,i wi j [xk
j , y

k
j , z

k
j ] +

∑n+b
j=n+1 wi j [x j , y j, zj ])

4: λi = [xi , yi , zi ]T [ x̃i , ỹi , z̃i ] − 1
5: [xk+1

i , y
k+1
i , z

k+1
i ] = [ x̃i , ỹi , z̃i ] − λi [xi , yi , zi ]

6: end for
7: end for

Proposition 2. The iterative algorithm 1 converges to the
unique solution of the saddle point problem (7) for sym-
metric weights.

P. We first prove the conditions for Theorem 2. Be-
cause the mesh is connected and a positive weight is
associated with each edge, A is irreducible. In addi-
tion, |aii | ≥

∑3n
j=1, j,i |ai j | for each row. Equality is true

if the corresponding vertex is connected only with free
nodes. Consequently, if the weights are symmetric and
at least one node is fixed, the matrixA is a hermitian
irreducibly diagonally dominant matrix, and therefore
positive-semidefinite withker(A) = 0. In addition, it is
obvious that the matrixB has full column rank since at
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least one of the components of each vertex will be non-
zero in the spherical domain. Therefore, the conditions
of Theorem 2 are satisfied. Furthermore,2

ω
D − A is posi-

tive definite for 0< ω < 1 since it is a strictly diagonally
dominant and irreducible matrix with positive diagonal
elements. Thus, the iterative procedure converges to the
unique solution.

4. Parallel Parameterization

We have developed a parallel implementation of the al-
gorithm presented in Section 3. The software is available
at http://www.cs.uoi.gr/~fudos/smi2011.html.
The inherent parallelism of the specific method enables
us to map the problem to the hardware as efficiently as
possible. As an API for our implementation, we have
used OpenCL 1.1 to achieve almost direct portability of
our core source to both GPU and CPU based architec-
tures.

To maximize the performance of our parallel imple-
mentation we have considered a number of key factors.
A characteristic that affects parallel algorithm effective-
ness on all architectures is the number of sequential steps
of the algorithm. To maximize the parallel execution we
have employed the Jacobi iteration.

We present heuristics that optimize the parallel perfor-
mance of the proposed algorithm. We have investigated
the employment of three optimization principles and we
have evaluated their effect on the performance for both
GPU and multicore architectures:

• Optimize memory usage to maximize instruction
throughput.

• Test for convergence only everyn iterations have
been carried out, to reduce the data synchronization
overhead.

• Increase the processing unit cache hit ratio.

One important consideration in modern GPUs are the
effective memory usage to achieve the maximum memory
bandwidth and the optimization of the instruction usage
to achieve the maximum instruction throughput [36]. To
optimize the memory usage we have further minimized
the data transfer between the host and the GPU device
by reducing the number of residual tests needed for the
convergence test for the solution of the saddle point prob-
lem. Since the convergence of the Jacobi is guaranteed, it
is not necessary to test the convergence of the linear sys-
tem at every iteration. More specifically, we have opted
to perform convergence tests only every a certain num-
ber of iterations. This is beneficial to modern GPUs since
it is better to increase the OpenCL kernel invocations on

the GPU and reduce the synchronization between the host
and the device.

We have conducted experiments with equal and con-
formal weights. Since conformal weights can be negative
in certain cases, all input angles can be clamped between
5o and 85o degrees as suggested by [19]. For all the ex-
amples, the algorithm terminationδ for the residual re-
duction was set to 10−7.

To reduce the data synchronization overhead, the resid-
ual of the saddle point problem was tested for conver-
gence every 1000 iterations. The sparse residual check
policy has a large impact on GPUs and especially on
GPUs with slower buses (PCIe 1.0).This has a small pos-
itive effect on multicores as well. Table 1 summarizes
the results of the parameterization on different commonly
used models [2, 12] using an NVIDIA GTX 480. We
have also obtained performance results by carrying out
our algorithm on two multi core processors, an Intel Core
Duo E6600 and an Intel Core i7-870. Figure 1 compares
the performance of these architectures. Table 3 illustrates
the difference in running times on the GPU and on the
CPU, while Table 4 presents a direct comparison with the
running times of the publicly available parameterization
software by Saba et al. [39]. For the results of Table 4 we
have applied our approach to the models accompanying
the software, using though a much smaller residual target
than the one used by Saba et al. [39].
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tion are also included.

Finally, many cache misses can be avoided by combin-
ing the method with preprocessing techniques that further
improve the cache locality of the mesh indices. Figure 2
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Table 1: Numerical results for finding a spherical parameterization on the GPU with different models. In this context, the number of iterations is the
number of saddle point problems solved.

model map # vertices # faces # iterationsL2 res (×10−8) time (secs)

Suzanne Barycentric 7573 15142 4 5 0.575
Suzanne Conformal 7573 15142 3 5 0.589
Gargoyle Barycentric 24990 49976 4 2 1.706
Gargoyle Conformal 24990 49976 3 6 2.326
Igea Barycentric 25586 51168 3 4 0.908
Igea Conformal 25586 51168 2 3 0.936
Lion Vase Barycentric 38952 77900 3 3 1.567
Lion Vase Conformal 38952 77900 3 3 2.053
Homer Barycentric 78850 157696 3 1 4.923
Homer Conformal 78850 157696 3 4 10.920
Buste Barycentric 183580 367156 3 1 13.759
Buste Conformal 183580 367156 2 1 22.667
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Figure 2: Cache hit rate statistics on the GPU. Results with avertex
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comparison.

presents experimental results regarding the cache hit ratio
for various models. The cache efficiency is decreased as
the size of the model increases. As a fast preprocessing
step, we have used the vertex locality optimization pro-
posed by Sander et al. [40]. The optimized results are also
included in Table 2 for comparison. We observe that with
the optimized meshes the computation time is reduced up
to 50% on the GPU. On multicore architectures this has
no effect since the CPU cache is usually large enough to
fit the entire mesh index.

5. Applications

5.1. Mesh Segmentation
Different measures have been used to detect structural

features on meshes such as curvature based computa-

tions [49], average error from fitting with surface patches,
planes, cylinders or spheres [30, 6], dihedral angles of
adjacent triangles [50], electrical charge density distribu-
tion [47], region flatness or smoothness [24], geodesic
distances [27] and convexity [37]. Such measures have
been used in conjunction with region growing [41], wa-
tershed functions [28], reeb graphs [5], skeletons [32],
clustering [27] and hierarchical clustering [20] and seg-
mentation [6], boundary extraction [29], Morse theory
[46] or probabilistic fields [37]. For an extended survey
of mesh decomposition techniques the reader is referred
to Agathos et al. [1] and Attene et al. [7].

Figure 3: Visualization of the area stretch factor.

Lien and Amato [33] and Lien et al. [34] present
a shape decomposition and skeletonization method for
polyhedrons that is based on approximate convex decom-

8



Table 2: Numerical results for barycentric mapping on the GPU with different levels of detail

model # vertices # faces # iterationsL2 res (×10−8) time (secs) opt time (secs)

Homer (Lod1) 5002 10000 4 10 0.577 0.483
Homer (Lod2) 10002 20000 4 2 1.059 0.725
Homer (Lod3) 20002 40000 4 2 1.961 1.224
Homer (Lod4) 40002 80000 3 2 3.986 2.178
Homer (Original) 78850 157696 3 1 4.923 3.636

Table 3: Comparison of running times (in secs) between GPU and CPU with different core configurations.

model map # vertices # faces # iterations GTX 480 i7-870 (4) i7-870 (2) i7-870 (1)

Gargoyle Barycentric 10002 20000 4 0.946 1.186 1.950 3.135
Gargoyle Conformal 10002 20000 4 0.949 1.045 1.685 2.714
Torso Barycentric 11362 22720 4 0.718 1.107 1.731 2.808
Torso Conformal 11362 22720 3 0.870 1.123 1.747 2.745
Skull Barycentric 20002 40000 3 0.649 1.076 1.719 2.904
Skull Conformal 20002 40000 2 0.643 0.920 1.373 2.230
Bunny Barycentric 67038 134074 3 1.217 3.616 6.635 12.038
Bunny Conformal 67038 134074 2 2.158 3.778 7.737 14.118

position. This principle was used by Stamati and Fudos
[44] to decompose point clouds into components that rep-
resent features by using the concavity intensity to detect
saddle points and the discrete curvature to detect edges. A
more general principle that can handle even complex (non
star-shaped) objects is to derive a minimal length 3D path
(curve segment) to connect the point to the convex hull
without crossing the mesh. Since the convex hull has a
straightforward spherical parameterization, finding a path
that connectsv to the convex hull corresponds to blowing
the interior of the object until it expands to the convex
hull. This is a CPU-intensive process that can be simu-
lated with a spring system [34, 35]. Our efficient paral-
lel spherical mesh parameterization can derive a measure
that is somehow related to the minimum path by comput-
ing the deformation that has been applied to the adjacent
triangles of a vertex. This yields a more robust measure
that can be computed exactly very efficiently. As com-
pared to very sophisticated techniques such as the one
presented by Katz et al. [26] that uses mesh coarsening,
MDS transforms and refinement, our work yields results
of comparable quality much faster. Post processing can
always be used for application specific mesh-segment re-
finement.

Our approach is based on the key idea that the spherical
embedding represents a pose invariant representation of
the mesh for quasi articulated objects. Any spherical em-
bedding is expected to create some dense concentrations
of faces on the sphere due to the prominent extremities

of the mesh. The extruding parts of the meshes, for ex-
ample the limbs, are expected to be mapped to relatively
small regions on the sphere. Therefore, thearea stretch-
ing factor(ratio of area in the surface and in the mapping)
in those parts is expected to be much higher than in the
rest of the mesh. Moreover, in the case of the conformal
map the angles are generally preserved in the mapping.
Therefore, the area distortion is affected more by the ge-
ometry of the model and less by the distortion introduced
in the mapped angles. Consequently, our thesis is that
the spherical embedding of a mesh contains a substantial
amount of information about its geometric shape. To il-
lustrate, consider Figure 3 where the area stretch factor of
the conformal parameterization for the octopus model is
depicted. Figure 4 visualizes the distortion of the param-
eterization in four typical models with limbs.

Definition 1. TheArea stretch factorof a vertexv0 of a
mesh denoted byA(v0) is the average of the area stretch
deformation of its adjacent faces.

Furthermore, we have carried out a number of experi-
ments with a region growing approach that takes advan-
tage of the above observation. The method starts from an
initial vertex (the seed) and expands while a threshold in
the variation of the area stretch factor is satisfied. Fig-
ures 5 and 6 show the segmentation of four typical mod-
els and a comparison with the mesh segmentation method
presented by Katz and Tal [27]. Katz and Tal [27] quoted
running times of a few minutes for segmenting moder-
ately sized meshes by relying on mesh simplification to

9



Table 4: Comparison of running times of our method vs the one by Saba et al. [39] on the same CPU (E6600).

model map # vertices # faces [39] method (secs) our method (secs)

Gargoyle Barycentric 10002 20000 23.58 3.422
Gargoyle Conformal 10002 20000 62.86 2.734
Torso Barycentric 11362 22720 26.50 2.704
Torso Conformal 11362 22720 84.49 2.719
Skull Barycentric 20002 40000 67.73 2.828
Skull Conformal 20002 40000 87.26 2.469

Figure 4: Visualization of the ratio between the mapped areaand the original surface. Blue and red colors correspond to high and low distorted areas
respectively.

reduce the computation cost. To compare the efficiency
of our method to theirs, it is important to note that our
approach does not require any pre-process or simplifica-
tion of the meshes. In all the experiments performed, the
running time for our segmentation method is dominated
by the parameterization step. For meshes up to 100K tri-
angles, the overall time was less than 5 seconds.

Definition 2. A vertexv0 is called aseed candidateif and
only if A(v0) exhibits a local minimum or maximum atv0.

We first derive the candidate seeds for our model. Sub-
sequently, the seeds are sorted in descending order ac-
cording to the area stretch factor and our region growing
approach is instantiated from these seeds. When a candi-
date seed is included in a new region it is removed from
the set. This results in a number of regions that represent

object extremities.

5.2. Texture mapping

With our method angle-preserving parameterizations
can be efficiently obtained and are often suitable for tex-
ture mapping. Figure 10 shows the differences between
the parameterizations using equal and conformal weights.
Furthermore, in Figures 9, 11, 12 and 13 we have applied
a checker texture to the meshes, by using the spherical co-
ordinates of the parameterization asuvcoordinates, to vi-
sualize the deformation differences between the two types
of parameterization. By acquiring this correspondence
one may apply deformations affecting the area of texture
features of the original texture, prior to mapping it to our
original mesh.

10



5.3. Shape Search

One important goal of shape searching algorithms is
to represent the mesh vertices with a pose invariant rep-
resentation [8, 42]. Initial tests showed that the spheri-
cal parameterization can be used to find similar poses of
meshes. The key idea is to compare the signatures de-
rived from the conformal mappings of the meshes. To
derive the signature of a mesh we use the histogram of
the area stretch factor. Since a conformal mapping is in-
dependent of the resolution of the mesh and preserves the
consistency of the orientation, we can further make the
signature invariant to the tessellation of the mesh. This
can be achieved with uniform or random sampling of the
meshes. Figures 7, 8 show the histograms obtained from
various poses of the same meshes. A thorough compar-
ison of the proposed shape search measure to other ap-
proaches, in terms of hits and misses, remains as future
work.

Figure 5: Automatic mesh segmentation.

6. Conclusions

We have presented a simple and efficient parallel nu-
merical scheme to approximate a spherical parameteriza-
tion of a genus-0 mesh. We have successfully used our
scheme to parameterize meshes of up to 400K triangles
in less than 25 secs.

We have carried out a large number of experiments to
validate that our iterative method converges to the actual
bijective mapping. Using a number of standard graphical
models, we have confirmed that in each case theL2 resid-
ual is decreased below a small tolerance value (10−7).

A possible extension of our work would be a theo-
retical result of the convergence behavior. This could
be reached from the fact that the algorithm is energy-
decreasing so that the iterative solution follows a path
close to the solution of the non-linear equations (3).

(a) Octopus with our method (b) Katz and Tal [27]

(c) Homer with our method (d) Katz and Tal [27]

Figure 6: Comparison of mesh segmentation results.

Finally, exploring other implementation options might
result in improved computational efficiency. In particular,
a more sophisticated iterative method for solving the sad-
dle point problem can be used to reduce the number of it-
erations required for convergence. Nevertheless, our pro-
filing tests show that our implementation is dominated by
the memory access latency and the data synchronization
delay between the host and the GPU. Therefore, whether
such an improvement would be beneficial remains to be
determined.
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Appendix A. Demonstration Video (for online publi-
cation only)

Figure A.14: Demonstration video illustating how segmentation is per-
formed using the area stretch factor derived by our spherical parameter-
ization method.

15


	Introduction
	Preliminaries
	Planar Parameterizations
	Spherical Parameterization by Reduction to the Planar Case

	Spherical Parameterizations
	An energy decreasing algorithm

	Parallel Parameterization
	Applications
	Mesh Segmentation
	Texture mapping
	Shape Search

	Conclusions
	Demonstration Video (for online publication only)

