
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 1

k+-buffer: An Efficient, Memory-Friendly and
Dynamic k-buffer Framework

Andreas A. Vasilakis, Georgios Papaioannou, Ioannis Fudos, Member, IEEE

Abstract—Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex
rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth
complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as
the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments.
Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced
by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically
and dynamically compute the most suitable value of k are still missing. To this end, we introduce k+-buffer, a fast framework that
accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array
and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel
synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful
memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according
to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU
cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating
the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality.

Index Terms—k-buffer, A-buffer, depth peeling, pixel synchronization, depth complexity histogram, dynamic geometry

F

1 INTRODUCTION

D EPTH-ORDERED fragment determination is a
standard stage in developing numerous appeal-

ing and plausible visual effects for interactive 3D
games and graphics applications. A variety of algo-
rithms ranging from photorealistic rendering, such
as global illumination [1], order-independent trans-
parency for forward, deferred, volumetric shading [2],
[3], [4] and shadowing [5] to volume visualization
and processing of flow, molecular, hair and solid
geometry [6], [7], [8], [9], [10] require accurate multi-
fragment processing at interactive speeds.

In the last decade, significant research has been
conducted on addressing the problem of visibility de-
termination from different perspectives, usually clas-
sified in a broad level based on whether they perform
depth ordering on the objects/primitives (geometric-
space algorithms) or on the generated pixel fragments
(image-space algorithms). Object- [11], and in higher
granularity, primitive-sorting techniques [12], [13] ex-
hibit increased popularity due to their unique com-
bination of desirable properties (error-free, extremely
efficient and easy integrated with the standard graph-
ics pipeline). However, they require an expensive
preprocessing step of building view-dependent data

• A. A. Vasilakis and G. Papaioannou are with the Department of
Informatics, Athens University of Economics & Business, Greece.
E-mail: {abasilak,gepap}@aueb.gr

• I. Fudos is with the Department of Computer Science & Engineering,
University of Ioannina, Greece. E-mail: fudos@cs.uoi.gr

structures (e.g. BSP tree [14]), which unfortunately
makes them unsuitable for scenes consisting of dy-
namic, or worse, self-intersecting geometry [15].

Avoiding these limitations, a family of GPU-
accelerated buffers is traditionally responsible of treat-
ing the problem of storing, and subsequently sorting,
the out-of-order surface intersections, namely frag-
ments, generated when sampling the geometry at
a pixel level. Figure 1 shows an illustrative exam-
ple of the fragment generation process as a per-
pixel ray-surface intersection process. While the GPU-
accelerated A-buffer [5], and its subsequent variants
that exploit fixed [16] or dynamic [17] paged mem-
ory management, are the dominant structures for
maintaining multiple fragments via one or more [18]
variable-length linked lists per-pixel, several alter-
natives have been proposed to alleviate the cost of
excessive allocation and access of video-memory [19].
k-buffer [20] as well as its stencil-routed version [21]

are widely-accepted A-buffer approximations, capable
of capturing the k-closest to the viewer fragments by
employing fixed-size vectors per-pixel on the GPU
(see also an illustrative presentation of the idea in
Fig 1). Despite their reduced memory and computa-
tion demands when compared to A-buffer solutions,
they both suffer more or less from read-modify-write
hazards (RMWH) caused when the generated frag-
ments are inserted in arbitrary depth order. To this
end, an abundance of k-buffer variants have been
recently introduced aiming at eliminating the disturb-
ing dotted or heavily speckled surface areas that re-
sult from the aforementioned problem, by performing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 2

x x

sorting

x x x x

view
direction

z0 z1

z0 z1 z3 z2

z2 z1 z0 z3

Fig. 1: Illustrating the construction process of a row
of a 4-buffer (highlighted with blue at the top-right
thumbnail), when ray casting the dragon model. A
significant amount of memory space is wasted at
pixels that consist of less than 4 fragments due to the
pre-allocation of the same buffer length per pixel.

two [22] or multiple passes [23], constructing an aux-
iliary A-buffer [9], or exploring hardware-accelerated
pixel synchronization mechanisms [24], [25] with the
cost of additional performance and memory require-
ments as well as the necessity of specialized hardware.

From a development and production standpoint,
complex and potentially animated environments, with
high occlusion, multiple points of interest or depth
layers can become very challenging in terms of find-
ing the optimal per pixel fragment complexity limit
(k) to correctly capture the designer’s intent under
constrained memory budget. Traditionally, this task
is addressed by an iterative trial-and-error procedure,
where the user manually configures the value of k, un-
til an acceptable visual result is produced. However,
this approach works with static geometry viewed
from particular viewpoints. Thus, the local scope of
the user intervention results in erroneously impacting
other areas and viewing configurations in the scene,
which finally distorts the output at a global scope.

In this paper, we extend our work on multi-
fragment rendering, the k+-buffer (K+B), first in-
troduced in I3D’14 conference [26]. The k+-buffer
is an efficient k-buffer framework that overcomes
the aforementioned performance bottlenecks, memory
footprints, image artifacts and hardware restrictions.

Contrary to most of the other k-buffer alternatives,
which store and sort the generated fragments on
the fly, we follow a faster strategy similar to the
one used by the A-buffer construction: The k-nearest
fragments are captured in an unsorted sequence,
followed by a post-sorting step that reorders them
by their depth. We explore a GPU-accelerated spin-
lock strategy via pixel semaphores to ensure real-time

synchronized construction of the unsorted k-front
fragments (Sec. 3.1). Two bounded array-based data
structures for fragment data are introduced which en-
able a low cost culling test that concurrently discards
outlier fragments (Sec. 3.2). A post-sorting process
that correctly reorders fragments by their depth via
a hybrid solution is finally performed (Sec. 3.3).

With respect to the original algorithm, we present
several novelties and extensions in this article. The
newly introduced contributions are the following:

• A novel fragment insertion strategy is introduced
alleviating part of the fragment congestion when
accessing the critical section (Sec. 3.2.1).

• Our framework may be easily extended to the
general context of finding the “best”, not necessar-
ily the closest to viewer, k fragments (Sec. 3.2.2).

• A histogram-based depth complexity limit (k)
estimator is employed to avoid delegating users
with the non-intuitive task of manually setting
the value of k under highly complex and po-
tentially dynamic environments (Sec. 4.2). To our
knowledge, this is the first k-buffer implementa-
tion with dynamic and precise allocation of the
required storage space.

• The problem of over-sized local GPU caches
when performing fragment sorting is resolved
by exploiting fragment culling with a fixed max-
array data structure (Sec. 4.4).

• A thorough experimental study is provided in-
cluding comparisons with depth peeling methods
as well as two recent competitive k-buffer imple-
mentations (Sec. 5).

The overall framework is described by offering
shader-like pseudocode and the fragment processing
pipeline. We highlight features and trade-offs of our
framework, pointing out implementation details and
light-weight modifications that can be used to guide
the decision of which pipeline alternative to employ
in a given setting. The structure of this paper is as
follows: Section 2 offers a detailed overview of prior
art. Section 3 introduces the algorithmic details of our
main framework. Section 4 describes how the pro-
posed pipeline is extended to support precise memory
allocation as well as dynamic k determination. Section
5 provides extensive comparative results for several
multi-fragment rendering alternatives. Finally, Section
6 offers conclusions and future research directions.

2 RELATED WORK

The problem of visibility determination in screen-
space has been thoroughly investigated in the com-
puter graphics research community during the last
two decades. Numerous multi-pass image-based tech-
niques have been developed on the GPU to resolve
fragment visibility ordering [19], aiming at minimiz-
ing more or less the computation cost and memory
allocation needed to accurately extract a fragment

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 3

subset s = {1, . . . , k}, k ≤ n of all generated per
pixel fragments n. We classify these techniques in two
broad categories based on the number of fragment
samples, denoted by fs from now on, captured by
each algorithm in a single iteration step.

Memory-unbounded algorithms aim at capturing all
fragments per pixel in a single geometry pass (fs =
n). Fragments are stored into variable-length data
structures per pixel during geometry rendering, fol-
lowed by a post-sorting process that correctly reorders
fragments by their depth.

On the other hand, memory-bounded algorithms suc-
ceed to process all fragment information through a
multi-pass rendering pipeline, implemented with a
constant video-memory budget. Depending on the al-
gorithm, each iteration carries out one or two geome-
try passes to extract a fragment batch with guaranteed
depth order (fs ≤ k). The main advantage of the
latter class is the memory overflow-free behavior at
the expense of increased computation requirements.

Memory-unbounded Methods. A-buffer [27] was the
first method to capture all fragments via real-time
concurrent construction of variable-length linked lists
per pixel in a single rasterization pass. Subsequently,
stored fragments are post-sorted according to their
depth values. With the recent advent of atomic mem-
ory operations on graphics hardware, Yang et al. intro-
duced an actual GPU-accelerated A-buffer implemen-
tation (ABLL) [5]. Although it initially suffered from
performance bottlenecks due to the heavy contention
and the random memory access when constructing
and assembling the entire fragment list [16], it is cur-
rently the preeminent method for processing multiple
fragments. The main reason is the L2 cache integration
in the recent generation of GPU architectures, which
has resulted in a significant increase of the atomic
operation throughput. Uniform [28] and adaptive [1]
tiling strategies have further been proposed to harness
the potential fragment overflow risks.

On the other hand, FreePipe [29], a complete
CUDA-based rasterization pipeline, maintains mul-
tiple fragments using fixed-size per pixel vectors. To
ensure complete fragment extraction for all pixels,
the buffer length must accurately be set prior ren-
dering. FreePipe has been realized using modern
OpenGL APIs, thus avoiding switching from the
traditional graphics pipeline to a software raster-
izer (ABArray) [30]. Despite its high performance, it
requires the allocation of a large and in some cases,
unnecessary quantity of graphics memory.

To overcome the limitations of both linked-list and
fixed-array techniques, two-geometry-pass A-buffer
variations were introduced by [17], [31]. While these
methods self-adjust memory allocation to handle a
variable number of fragments per pixel without wast-
ing memory, only the S-buffer realization (ABSB) [17]
is CUDA-free and exploits sparsity at the pixel-space.

In the context of the fragment post-sorting stage,
several approaches have been proposed to alleviate
more or less the performance bottlenecks, when han-
dling high depth complexity scenes. To overcome the
sequential nature of the sorting process on the num-
ber of depth layers, a CUDA-based technique was
proposed by Patney et al. [32] extending the domain
of parallelization to individual fragments. The idea
of altering the sorting algorithm per pixel based on
the number of stored fragments has shown significant
benefits [33]. A novel register-based block sorting
algorithm is recently introduced, better exploiting the
memory hierarchy of the GPU [34]. Inspired by the
works of [35], [36], Vasilakis and Fudos [18] proposed
to concurrently store fragments into more than one
per-pixel linked lists (ABLL-BUN), speeding up the sub-
sequent sorting phase. Lindholm et al. [37] presented
two novel components to improve the management of
local GPU caches. The former minimizes the allocated
size in the fast cache memory by adjusting the alloca-
tion to pixel depth complexity (also found here [38] as
backwards memory allocation), while the latter partitions
the depth sorting similarly to depth peeling [39] and
recycles a smaller amount of allocated memory.

Memory-bounded Methods. Regardless of the data
structure, the aforementioned class of methods suf-
fers from (i) memory overflows as a result of the
unbounded buffer needed to store all generated frag-
ments, and (ii) performance bottlenecks that arise
when the number of per-pixel fragments to be post-
sorted increases significantly.

Probably the most well-known multi-pass peeling
technique, due to its low and constant storage re-
quirements, is front-to-back (F2B) depth peeling [39],
which works by rendering the geometry multiple
times, peeling off a single fragment layer per pass.
Dual depth peeling (DUAL) [40] speeds up multi-
fragment rendering by capturing both the nearest
and the furthest fragments in each pass. DUAL was
further extended by extracting two fragments per
uniform clustered bucket (BUN) [35]. To alleviate Z-
fighting issues in depth peeling, a number of solutions
were recently introduced [18]. However, despite the
advent of several optimizations (Z-Batches [41], coher-
ent layer peeling [42], object culling [18]), multi-pass
rendering is regularly required to carry out complex
scenes, substantially failing to behave interactively.

k-buffer (KB) [20], [43] reduces computation cost
by capturing the k-closest to the viewer fragments
in a single geometry rasterization pass. However, it
is susceptible to disturbing flickering artifacts caused
by RMWH during fragment insertion updates. Liu et
al. extended this work to a multi-pass approach (KB-
Multi) [23] achieving robust rendering behavior with
the trade-off of low frame rates. Moreover, Bavoil
and Mayers eliminated most of the memory conflicts
by performing stencil routing operations on a multi-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 4

sample anti-aliasing buffer (KB-SR) [21]. Finally, a
memory-hazard-aware solution (KB-MHA) [44] based
on a depth-error correction coding scheme is explored,
however do not guarantee, in practice, correct results
in all cases. The image quality of the methods de-
scribed above is highly dependent on a coarse CPU-
based pre-sorting in primitive space, which elimi-
nates the arrival of out-of-order fragments. Multiple
rendering iterations, are further required to provide
an A-buffer output, due to the limited number of
multiple render targets on the GPU. As expected,
this results in significant performance downgrade.
Conversely, Wang and Xe proposed partitioning the
input scene into components with a bounded number
of layers and then rendering them individually to fit
into the limited KB-SR buffer size [45]. However this
scheme cannot support animated scenes and is not
particularly suitable for order-dependent applications.

Multi-depth test scheme (KB-MDT32), developed in
both CUDA [29] and OpenGL [22] APIs, guarantees
correct depth order results by capturing and sort-
ing fragments on the fly via 32-bit atomic integer
comparisons. However, its inability to simultaneously
update the depth and color values necessitates an
additional costly geometry pass. Fortunately, its 64-
bit version (KB-MDT64) [46] is currently feasible to
run on modern NVIDIA graphics cards [47]. However,
noisy images may be generated from both 32- and 64-
bit versions due to the precision lost when converting
floating depth values.

Similar to our method, Salvi extended the origi-
nal k-buffer to avoid fragment racing by employing
hardware-aware pixel synchronization (KB-PS) [24].
However, this method is compatible only with graph-
ics cards based on the Haswell architecture.

Finally, Yu et al. proposed two linked-list-based
solutions to accurately compute the k-foremost frag-
ments [9]. The idea of the first one is to capture
all fragments by initially constructing an A-buffer
via linked lists [5], followed by a step that selects
and sorts the k-nearest fragments (KB-ABLL). The
same strategy was also followed by prior work [48]
which adaptively compresses fragment data to closely
approximates the ground-truth visibility solution. On
the other hand, the second approach directly com-
putes depth-ordered per-pixel linked lists avoiding
the unnecessary A-buffer construction (KB-LL). De-
spite the fact that it theoretically requires less storage,
fragments are sparsely stored in memory causing the
additional allocation of contiguous blocks of memory.

Table 1 presents a comparative overview of all k-
buffer alternatives with respect to memory require-
ments, rendering complexity, fragment extraction ac-
curacy and sorting stage.

3 CORE FRAMEWORK OVERVIEW
We propose k+-buffer, an efficient k-buffer implemen-
tation on the GPU, which is free from: (i) geometry

sorting prior to rasterization, (ii) unbounded memory
requirements, (iii) RMW memory-hazards, (iv) depth
precision conversion artifacts and (iv) specialized
hardware extensions (i.e. pixel synchronization, 64-bit
atomic operations). Contrary to most k-buffer alter-
natives, which store and sort the generated fragments
on the fly, we initially store the k-nearest fragments in
an unsorted sequence, followed by a post-sorting step
that reorders them by their depth. A semaphore-based
spin-lock mechanism ensures atomicity of the per-pixel
fragment operations in the shared memory. Imple-
mentation details are also provided to easily switch
to the hardware-implemented pixel syncing solutions
available on the modern architectures (Sec. 3.1). To al-
leviate contention (busy-waiting) of distant fragments,
we concurrently perform culling checks that efficiently
discard fragments that are farther from all currently
maintained fragments.

Two array-based data structures are built on the
GPU to accurately store the closest per-pixel frag-
ments: (i) max-array, an array where the maximum
element is always stored at the first entry and (ii) max-
heap, a complete binary tree in which the value of each
internal node is larger than or equal to the values of
the children of that node. Despite its linear complexity,
the former performs faster than the latter when the
problem size is sufficiently small (Sec. 3.2). Finally, a
post-sorting process correctly reorders fragments by
their depth by exploring a hybrid solution (Sec. 3.3).

3.1 Spin-Lock (SL)
Per-pixel binary semaphores are utilized as a synchro-
nization mechanism to ensure fragment-exclusive use
of the critical storage section. Taking into account the
possibility of simultaneous access to the lock, which
could cause race conditions, an implementation of an
atomic test-and-set operation is introduced. Typically,
the calling thread obtains the lock if the old value
was 0. It spins writing 1 to the variable until this
occurs. One way to implement spin-lock strategy
employing test-and-set into a pixel shader is shown
in Algorithm 1 (ignore color-coded lines).

Algorithm 1 MutualExclusion (Texture t, Pixel p)

1: beginFragmentShaderOrderingINTEL(); . acquire lock (PS)
2: beginInvocationInterlockNV(); . acquire lock (FSI)
3: while true do . spin until lock is free (SL)
4: if !imageAtomicExchange(t, p, 1) then . acquire lock (SL)
5: {enter critical section} . exclusive use
6: imageStore(t, p, 0); . release lock (SL)
7: break; . stop spinning (SL)
8: end if
9: end while

10: endInvocationInterlockNV(); . release lock (FSI)
. where ‘text’ and ‘text’ defines the PS and FSI implementations

to fragment-exclusive use of the critical section, respectively

A 32-bit unsigned integer texture with internal
pixel format R 32UI is allocated to represent the per-
pixel semaphores. First, a full-screen quad rendering

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 5

(clear pass) is executed to initialize the texture with
zeros. Our method is enhanced by the OpenGL’s
imageAtomicExchange(texture lock, ivec2 P, uint V)
function, which atomically replaces the value V of
the atomic object with the argument into texel at
coordinate P and returns its original value.

Pixel Synchronization (PS) is an extension that Intel
has recently introduced for its IRIS Pro Graphics that
provides an inexpensive mechanism to avoid frag-
ment conflicts in the critical sections and ensures that
RMW memory operations are performed in submis-
sion order [24]. Following this trend, a similar exten-
sion was developed, named Fragment Shader Inter-
lock (FSI) [25], supported only by NVIDIA graphics
cards with Maxwell architecture. Our framework can
be enhanced by the use of PS/FSI without remodeling
the proposed pipeline by minimal implementation-
wise modifications (see colored code in Algorithm 1).
Note that avoiding the usage of per-pixel semaphores
also results in reduced memory demands.

3.2 Fragment Storing

A geometry rendering (store pass) is initially carried
out to capture the closest fragment data per-pixel in
a 64-bit floating point 3D array buffer with internal
format of RG 32F, (R for color and G for depth) and
k length. Figure 1 illustrates a k+-buffer which can
hold up to 400 fragments (screen size: 10× 10, k = 4).

To alleviate the spinning of n generated fragments
that do not belong to the closest k, a fast culling mech-
anism is performed. The idea is to efficiently discard
each incoming fragment fi, ∀i ∈ {0, . . . , n−1} that has
equal or larger depth value (fi.z) from all currently
maintained fragments, before trying to acquire the
semaphore. Note that i determines the submission
order. Let ai[:] = {ai[j], j = 0 . . . k − 1} denote the
contents of the k+-buffer when fragment fi has been
processed. Initially, we do not discard any incoming
fragments until the fragment storage buffer is full
(∀i < k). Then, we discard all fragments fi such that
fi.z ≥ max{ai−1[:].z}. On the other hand, a fragment
with fi.z < max{ai−1[:].z} replaces the fragment of the
k+-buffer with the largest depth value. This strategy
guarantees that the k-nearest fragments will always
survive since:

max{an−1[:].z} ≤ · · · ≤ max{ai−1[:].z}
≤ · · · ≤ max{ak−1[:].z}

(1)

To achieve fragment culling without traversing the
entire pixel row for every incoming fragment, we have
developed two array-based data structures on the
GPU that both store the maximum element at the first
array position: (i) max-array (K+B-Array) and (ii) max-
heap (K+B-Heap). Thus, this operation is performed
in constant time. The implementation of this idea is
shown in Algorithm 2 (ignore blue-colored code).

Max-array can be considered as an array where
the fragment with the largest depth value is always
stored at the first location and the rest are randomly
positioned. When an incoming fragment obtains a
semaphore, it stores its information in the first empty
entry (O(1)). In this case, a per-pixel counter (32-bit
unsigned integer texture with internal pixel format
R 32UI) is utilized as index and incremented after a
successful insertion. Per-pixel counters are initialized
to zero during the clear rendering pass. If the array is
full (counter == k), it takes the place of the fragment
with the largest depth value. Note that since the
culling mechanism resides outside the critical section,
an additional check is mandatory to guarantee correct
results. To keep max-array consistent after an insertion
on a completely filled array, we find the fragment with
the largest depth value (O(k)) and swap it with the
newly added fragment (except when the latter is the
largest one). This process is implemented without the
use of any costly atomic operations since fragment
atomicity is guaranteed.

However when the problem size increases (k > 16),
fragment data information can be alternatively main-
tained in a max-heap data structure. Max-heap is a
complete binary tree (shape property) in which all
nodes are larger than or equal to each one of its chil-
dren (heap property). Max-heap can be implemented
using a simple k-sized array without allocating any
space for pointers: If the tree root is at index 0,
then each element at index i ∈ [0, k) has children at
indices 2i + 1 and 2i + 2 and its parent is located at
index b (i−1)

2 c. Since the first node contains the largest
element, the core pipeline followed by max-array is
not altered. Both inserting operations to an empty
or a full heap modify the heap to conform to the
shape property first, by adding nodes from the end
of the heap or replacing the heap root (O(1)). Then,
the heap property is restored by traversing up-heap or
down-heap (O(log2 k)). Pseudocode for both insertion
functions can be found in the original paper [26].
Figure 2 illustrates how both data structures with
k = 8 are constructed and updated from a number
of out-of-order fragment insertions. Notice that two
incoming fragments are successfully discarded when
the buffer is completely full. A comparison of internal
data representations between max-array and max-
heap node pointers is also shown.

3.2.1 Revising K+B-Array

Based on the observation that the process initially
requires the insertion of k fragments before it starts
performing any culling test, we aim to lessen fragment
racing by performing direct insertions of the first
k − 1 incoming fragments. This is extremely efficient
in cases where k+-buffer is large enough to contain
all (n ≤ k) or most (k ≤ n ≤ 2 · k) of the generated
fragments (n = maxp{f(p)}, where f(p) is the number

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 6

12 20 5 7 10 11 9 25 1

counter > kcounter ≤ k
fragments

arrival order 15 18

Max-Heap

20

9 7 10 11

12 15

5

20

10 11

15

1

15

10 11

1

15

9 7 10 1

12 11

0

1 2

3 4 5 6

5
7

15
0

12
1

11
2

9
3

7
4

10
5

1
6

5
7

15 15

12

Max-Array

- 15 12 20 5 7 10 11

15 1 12 9 5 7 10 11

20 15 12 9 5 7 10 11

0 1 2 3 4 5 6 7

- 15 12 20 5 7 10 -

- 15 - - - - - -

Fig. 2: Overview of the insertion process of an arbitrary sequence of out-of-order fragments when (left) max-
array and (right) max-heap data structures with k = 8 are utilized. The incoming fragment in each step is
highlighted with a glow effect. When the array is full, fragments with value larger than the maximum captured
fragment (yellow-colored) are efficiently discarded (f8.z= 25 and f10.z= 18).

of generated fragments at pixel p[x, y]), behaving more
or less as fast as ABArray.

To ensure concurrency in all cases, a per-pixel
atomic counter indicates the next available address
position for the incoming fragment. Performance-
wise, this idea is not suggested to be applied at the
heap structure since a costly heapify operation must
be performed (to ensure both heap properties) after
the heap becomes completely full. The code upgrade
needed to revise fragment culling shader is illustrated
with blue in Algorithm 2.

Algorithm 2 K+B-Array-R (Array a, Tex t, Pix p, Frag f , Int k)

1: p.counter ← p.counter+1; . atomic index increment
2: if p.counter < k then . first k fragments
3: a[k − p.counter − 2] := f ; . fast fragment store
4: else
5: if f .z < a[0].z then . fragment culling
6: MutualExclusion(t, p); . slow fragment store (Alg. 1)
7: end if
8: end if
. where ‘text’ defines the revised fragment culling implementation

3.2.2 Generalized k+-buffer
Without loss of generality, our framework may be
modified to capture any unsorted sequence of k frag-
ments (not being restricted to the k-closest ones).
Instead of culling using as criteria the depth value
of each incoming fragment fi, we may remove the
fragment node that generates the largest error to the
integration over a general objective function g(fi)
subject to a number of inequality constraints yj(x).
Thus, fragment culling condition in Algorithm 2 can
be generalized as the minimization of:

min
yj(x)≤0,j=1...J

g(fi) = h(fi)− h(a[0])

h(a[0]) = max{h(ai−1[:])}
(2)

In the special case of K+B-Heap, the formulation of
culling optimization equals to:

h(fi) = fi.z and y1(p) = k − p.counter (3)

since ai[0] is altered after each successful fragment
insertion even from the first i < k ones. However, due

to our choice to store fragments without sorting them
on the fly, applications that demand the depth-order
property after every fragment insertion, like Adaptive
Transparency [48], are hard to implement without al-
tering the core data structure.

3.3 Fragment Sorting
Finally, a sorting process is employed to reorder the
fragments for each pixel before generating the final
image (resolve pass). Unsorted fragments are initially
copied into a local array of size k per pixel before
performing the depth sort, as it is relatively faster
to perform read-write operations in the local space
rather in the global graphics memory. Finally, based
on the number of captured fragments, a mechanism
decides which sorting algorithm is applied to each
individual pixel [33]. Despite its quadratic complex-
ity, insertion sort is faster for sorting small fragment
sequences. When the number of generated fragments
increases (f(p) > 16), shell sort is preferred. Note
that the backward memory allocation [38] can easily be
employed to harness local memory cache overflow
and latency issues.

4 MEMORY-AWARE EXTENSIONS

Aiming at optimizing the GPU memory that a k-
buffer-based rendering framework will allocate for
frame buffers (with respect to local and global mem-
ory), we have extended our framework with four
novel components:

• A pipeline extension is initially introduced to dy-
namically and precisely handle graphics memory
allocation (Sec. 4.1).

• The value of k may be adaptively computed
by analyzing the depth distribution histogram
of the rasterized scene based on the specified
application objectives and GPU global memory
constraints (Sec. 4.2).

• Depending the adjusted/determined k, the pro-
posed method can also be considered as a
unified framework that successfully integrates

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 7

the functionalities of Z-buffer, k-buffer and A-
buffer (Sec. 4.3).

• Finally, to avoid overflow and thread swap wait-
ing that occurs at the local GPU memory, the
K+B-Array idea is also utilized to perform l+-
depth-sorting, reusing a constant amount (l) of
allocated space (Sec. 4.4).

4.1 Precise Memory Allocation
Similar to all k-buffer alternatives where k is the same
for all pixels, both K+B-Array and K+B-Heap require
potentially large and unused pre-allocated storage
requirements for pixels that contain less than k frag-
ments (k-fragmentless pixels). For example, Figure 1
illustrates the wastefully allocated storage of a 4-
buffer for (top) a pixel that consists of two fragments
and (bottom) an empty-pixel. Note that the value of k
is not automatically adjusted based on the rasterized
scene and must be carefully set a priori by the user.

Inspired by ABSB [17], we introduce a memory-
aware implementation using two geometry passes
(K+B-ABSB). Memory is linearly organized into vari-
able contiguous regions for each pixel, making it feasi-
ble to implement both proposed data structures. A
precise allocation of the required memory space is
achieved by performing an initial geometry rendering
(count pass), which sums up the number of fragments
covering each pixel via hardware occlusion queries.
Contrary to ABSB, where all fragments contribute to
the per-pixel aggregation, we bound the number of
fragments that affect a pixel by k when f(p) > k. For
each incoming fragment, a per-pixel counter is atom-
ically incremented (p.counterTotal). When the value
of the counter reaches k, the subsequently arriving
fragments are discarded. Then, the memory offset
lookup table (referencing pass) is computed in a
parallel fashion exploiting sparsity in pixel space.
Finally, per-pixel counters (p.counter) are initialized
to zero to guide the subsequent storing phase.

To increase memory caching, and therefore perfor-
mance, we cluster non-empty pixels based on a uni-
form square tiling strategy replacing the pixel-column
hashing function of the initial implementation. For
additional information of the algorithmic details and
shader implementations of this pass, readers are re-
ferred to the original ABSB paper [17].

A geometry rasterization is employed to store
the most significant fragments to a hybrid buffer
scheme starting from the memory offsets computed
for each pixel. Knowing its fragment cardinality a pri-
ori (p.counterTotal), each pixel can efficiently choose
the fastest way of storing its fragments in either a
max-array or a max-heap storage. Since max-array
structure inserts elements faster than max-heap, when
the capacity is not full and k stays small, we apply
the following strategy: if f(p) > k and k > 16 then
we pick max-heap, otherwise we use the max-array
data structure as storage buffer.

In terms of performance, accessing random memory
for concurrently storing all fragments becomes a sig-
nificant bottleneck as opposed to the original single-
pass versions, which benefits from the fast operations
in sequential memory space. Last but not least, the
need of an additional geometry rendering step also
adds a tessellation-dependent computation cost.

The missing components for fulfilling K+B-ABSB
pipeline, including the original as well its dynamic
version (discussed below), are shown in Algorithm 3.
Note that insert empty() and insert full() are the ab-
stract insertion functions. K+B-Array and K+B-Heap
own versions of both functions are available in the
source code provided as supplementary material.

4.2 Maximum Captured Layers (k) Prediction

Manually setting k for arbitrary geometry and view-
ing configuration easily leads to either a poor cov-
erage of the depth complexity or an overestimation
of its value, due to potential camera movement or
animated/dynamically generated geometry. This in-
evitably results in visible and view-dependent arti-
facts or bad memory utilization.

We present here an intuitive and automatic method
for the prediction of the maximum layers k captured
by a k-buffer, based on the histogram of the per-
pixel depth complexity. The idea is to perform an
additional geometry pass (or easily embedded at
the count pass of K+B-ABSB) to generate the depth
complexity histogram on the GPU, followed by a
host-side process that minimizes the allocated size of
k according to different application goals and GPU
memory limitations.

Generally, the essential design goal behind this
process, and subsequently the principles and rules to
adhere, depend on the pertinent application. Usually,
we need to estimate a value for k that conforms
with the total k-buffer memory bound while achieves
the desired quality level. In this work, we adjust k
aiming at matching a desired fragment hit ratio Rh as
a quality goal, also called robustness ratio: the total
number of extracted fragments over the total number
of generated fragments. Rh is efficiently computed
using hardware-accelerated occlusion queries at the
count pass. The user-specified hard constraint of the
maximum memory budget Mb is provided in MB.

Although, histogram generation is an inherently
sequential operation, where thousands of pixels con-
tribute votes to a reduced set of disjoint categories,
known as bins, the analyzed variable (in our case
fragment samples) accumulation can be carried out via
atomic additions available on modern graphics hard-
ware (see histogram pass in Algorithm 3). With the
current hardware limitation on the number of avail-
able atomic counters, we can handle a per-fragment
depth complexity up to 1024, which is more than
adequate for most scenes.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 8

1

4

16

64

256

1024

4096

16384
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

p

ix
el

s

fragments

1.21x 63.66%

k=8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Viewpoint 1 Viewpoint 2 Viewpoint 3

Frame 1 Frame 2 Frame 3

Fig. 3: Depth complexity histogram (log2 scale) of
Hairball rasterization. Observe the computed k for
different values of GPU memory and robustness ratio.

Given the width Iw and height Ih of the resolution
of the rendering image I and the storage requirements
of the selected k-buffer algorithm, which in general
can be expressed as x · k + y bytes per pixel, we can
compute an upper bound kb for the final k based on
the memory budget Mb as follows:

Mb =
(x · kb + y) · Iw · Ih

10242
⇔ (4)

kb =
10242 ·Mb/(Iw · Ih)− y

x
(5)

Then, traversing the generated depth complexity
histogram h from back-to-front, which is first trans-
ferred to the CPU from the GPU [49] and normalized,
we can measure how many fragments we miss so far
(1023 . . . kb) and continue until the robustness ratio
goal is met. This optimization can be formulated as:

min
k≤kb

{∑k
i=1023(i− k) · h[i]∑

p f(p)
−Rh

}
(6)

Since it is not straightforward to compute kb in the
case of K+B-ABSB due to

Mb =

∑
p x ·min{f(p), kb}+ y · Iw · Ih

10242
(7)

we set kb = 1024 and add an inequality constraint to
Eq. 6:

∑
p x ·min{f(p), k} ≤Mb − y · Iw · Ih .

Figure 3 illustrates the depth complexity histogram
when rasterizing the Hairball model from a fixed
point of view. Observe the highlighted k for different
values of GPU memory and robustness ratio. On the
other hand, Figure 4 shows how k is dynamically
adjusted to fit the user constraints (Mb = 200MB
which results in kb = 32 and Rh = 95%) in scenes
where (left) the virtual camera is allowed to freely
roam inside the 3D scene and (right) many elementary
objects are moving and interacting with each other.

4.3 Unified Fragment Buffer

k+-buffer can also be considered as a unified frame-
work that successfully integrates the functionality of

Algorithm 3 Dynamic K+B-ABSB (Array a, Hist h, Pix p, Int k)

1: procedure CLEAR(h,p) . full-screen quad pass
2: h[:] := 0; . init histogram to zero
3: p.address := 0; p.counterTotal := 0;
4: end procedure

5: procedure COUNT(p, k) . geometry pass
6: if p.counterTotal < k then . bounded accumulation
7: p.counterTotal ← (+1);
8: else
9: discard;

10: end if
11: end procedure

12: procedure HISTOGRAM(h, p) . full-screen quad pass
13: if p.counterTotal > 0 then
14: h[p.counterTotal−1] � (+1); . increment bin’s counter
15: end if
16: end procedure

17: procedure REFERENCING(p, k) . full-screen quad pass
18: p.counterTotal := min{p.counterTotal,k} . bound counter
19: p.address :=compute pixel offset(p.counterTotal);
20: p.counter := 0;
21: end procedure

22: procedure STORE(a, t, f, p, k) . geometry pass
23: p.method := (k < 16 or p.counterTotal < k) : Array ? Heap;
24: if p.counter < k or f .z < a[0].z then . fragment culling
25: acquire lock(); . enter critical section (Alg. 1)
26: if p.counter < k then . array is not full
27: insert empty(p.counter++,p.method);
28: else if f .z < a[0].z then . fragment culling
29: insert full(p.method);
30: end if
31: release lock(); . exit critical section (Alg. 1)
32: end if
33: end procedure

34: procedure RESOLVE(a, p) . full-screen quad pass
35: l+-depth-sorting (a, p, 32); . fragment sort (Alg. 4)
36: end procedure

. where ‘text’ and ‘text’ respectively must be inserted and
be removed from overlapping functions when dynamic k solution is
exploited. {←, �} denote atomic {store, increment} operations

Z-buffer, (multi-pass) k-buffer and A-buffer depend-
ing on the user-defined or dynamically computed k
value. By allocating a single entry per pixel (k = 1),
our method ensures displaying the closest fragment to
the viewer. However, this comes with the additional
expense of extra memory requirements and perfor-
mance downgrade when compared to the hardware
depth buffering.

On the other hand, depending on memory con-
straints and GPU processing capacity, k value can
be set large enough to avoid any fragment-overflow
(k = maxp{f(p)}). More specifically, our framework
can be considered as a hybrid scheme that correctly
simulates the behavior of ABArray (when K+B is used)
or ABSB (when K+B-ABSB is used). Performance-
wise, the semaphore-free implementation of max-
array structure (Sec. 3.2.1) should then be chosen due
to its constant insertion complexity when the array is
not full (since ∀p[x, y] : f(p) ≤ k).

Despite the fact that our framework is not restricted
from multiple render targets and samples of the anti-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 9

1

4

16

64

256

1024

4096

16384

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

p

ix
el

s

fragments

1.21x 63.66%

k=8

1

10

100

1000

10000

100000
1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

Viewpoint 1 Viewpoint 2 Viewpoint 3

1

10

100

1000

10000

100000

1000000

2 4 6 8

1
0

1
2

1
4

Frame 1 Frame 2 Frame 3

Fig. 4: Depth complexity histograms (log10 scale) for fixed Mb = 200MB and Rh = 0.95, when rendering (left)
the motor engine model rendered from different viewing angles and (right) three frames of a multi-object
animation. Observe how the k value adapts (left: {8, 19, 13} and right: {4, 8, 10}) using our prediction process.

aliasing buffer, limited hardware resources may result
at a low k (< maxp{f(p)}). Thus, we have developed a
k-depth peeling variation to achieve the functionality
of an A-buffer under constrained memory demands
by performing dmaxp{f(p)}/ke rendering iterations.
Following the formulation of Sec. 3.2.2, we insert an
additional inequality constraint y2(fi) = ai−1[0]−fi to
offer multi-pass behavior using the furthest fragment
of the previous iteration i− 1 as the culling criterion
for iteration i.

4.4 l+-depth-sorting
While the fragment sorting strategy described in
Sec. 3.3 does not suffer from local memory cache
overflow and reduced hot swapping for small values
of k (≤ 64), this is not true when operating with
dynamic scenarios (see Sec. 4.2). Extending the idea of
fragment ordering using depth peeling at a local cache
level [37], we propose a faster variation, called l+-
depth-sorting by extending K+B-Array to increase the
computational throughput as well as the maximum
supported depth complexity in local memory.

In each iteration, the l-front fragments, where l
is predetermined and in our tests fixed to 32, are
efficiently chosen by traversing the global fragment
memory and stored at an l-sized local array, follow-
ing the strategy described in Sec. 3.2.1. Please note
that semaphores are not needed in this case, since it
is a problem treated sequentially. Subsequently, the
captured fragments are sorted and resolved, finalizing
the current iteration. The farthest fragment captured
in this iteration is efficiently used in the following one
for discarding all previously processed fragments.

The limitations of this approach are (i) its inabil-
ity to handle z-fighting issues (we refer readers to
a comprehensive review for eliminating this phe-
nomenon [18]) and (ii) the requirement of reading
the entire fragment list multiple times from global
GPU memory (df(p)/le). On the other hand, the loop
may terminate sooner, e.g. in the special case where
opacity thresholding is performed [41] for transparent
objects, avoiding lots of computations. The complete
l+-depth-peeling code is shown in Algorithm 4 (see
Appendix provided as supplementary material).

Finally, Figure 5 illustrates the complete k+-buffer
framework, highlighting the flow among components
(shaders) that should be followed to perform the
corresponding functionality.

5 RESULTS

We present an experimental analysis of our k+-buffer
approach versus a set of depth-peeling, k-buffer and
A-buffer realizations focusing on performance, ro-
bustness, and memory requirements under different
tested conditions. We have measured performance in
terms of milliseconds (ms) and memory requirements
in terms of megabytes (MB). For the purposes of
comparison, we have developed two variations of KB-
ABLL, where instead of using per-pixel linked lists
for the A-buffer construction, we have applied ei-
ther fixed-length (KB-ABArray) or variable-length (KB-
ABSB) arrays for each pixel. The shader source code
from all tested methods is also provided as sup-
plementary material. All methods are implemented
using OpenGL 4.4 API and mainly performed on the
NVIDIA GTX 780 Ti with 3 GB of memory. Finally, we
have implemented our own semaphore mechanism
instead of using INTEL’s pixel synchronization to run
KB-PS method on the above hardware.

Table 1 presents a comparative overview of all k-
buffer alternatives with respect to memory require-
ments, rendering complexity, and other features.

5.1 Performance Analysis
We have performed an experimental performance
evaluation of our methods against competing tech-
niques using a collection of scenes under several
different configurations. We aim to extend and update
the performance analysis conclusions found in the
original version of this paper [26], where experiments
were carried out on an older NVIDIA GTX 480.

Instead of rendering scenes under different image
resolutions, we have used a 1024×1024 viewport and
performed zooming resulting in measurements at dif-
ferent image coverage values. For a fair comparison,
all methods are tested in extreme conditions under
artificially generated scenes that cover a percentage of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 10

CLEAR COUNT STORE RESOLVE

memory
alloc

REFERENCING

l+-depth sorting
pixel sync

HISTOGRAM K

K+B-Array/K+B-Heap

K+B-ABSB Dynamic K+B-Array/K+B-Heap

multi-pass versionDynamic K+B-ABSB

Fig. 5: Diagram of the k+-buffer pipeline. Each box represents a shader program except the orange one which
is implemented in CPU. The blue boxes are executed per-pixel using a full-screen quad rendering pass, while
the green ones are executed for each geometry-rasterized fragment.

1

10

100

1000

Ti
m

e
(m

s)

Count/Store(Z) Store Resolve

k=32 k=64k=16k=4 k=8

Fig. 6: Performance evaluation in ms (log10 scale) of k-buffer variants with varying k on a scene with n = 128.

screen size (or pixel density: pd) and produce n = r ·k
randomly produced fragments per pixel, where r ≥ 1.

5.1.1 k-buffer Comparison
Impact of k. Figure 6 shows how the computa-
tion time, for each rendering pass of a set of k-
buffer methods, scales by increasing the value of
k = 4, 8, 16, 32, 64 for a scene that consists of n = 128
fragments per-pixel. We observe that our K+B vari-
ants perform better than the other memory-bounded
techniques for all k values. As expected, K+B-Heap
performs better than K+B-Array for larger values of
k. Note that when k = 64, K+B-Heap is up to 3.5×
and 4× faster than the current implementations of KB-
PS and KB-MDT32, respectively. Although the one-
pass KB-MDT64 outperforms its 32-bit version for k =
4, major performance issues appear when fragment
racing becomes more intense for larger values of k,
probably due to the slower 64-bit atomic operations.

Our methods are slightly slower than the A-buffer-
based ones due to the faster atomic operations on
modern hardware (L2 cache). Note that the resolve step
is more expensive for the former methods, since it
has to locate the closest k fragments from all captured
ones before sorting. Finally, we observe that the count
and resolve passes of K+B-ABSB cost less in terms of
computations as compared to the ones of KB-ABSB
due to the restricted operations carried out by the
former. However, slow fragment storing in global
memory results in a performance downgrade when
the rasterized fragments are significantly increased.

Impact of Culling. Following the same tested con-
figuration, Figure 7 illustrates how the performance
significantly improves when the fragment culling

mechanism is exploited to our K+B-Array methods.
KB-PS and KB-MDT32 can efficiently be adjusted
to support this functionality achieving a significant
boost, however, not enough to beat the K+B-Array
performance. As expected, the mechanism soothes
when k increases.

Unfortunately, the proposed fragment rejection pro-
cess suffers from several limitations. First of all, the
process initially requires the insertion of k fragments
before it starts applying any culling test. Second, it
depends on the fragment incoming depth order; hav-
ing no impact at the worst case scenario of fragments
arriving in descending order. Furthermore, the ac-
tual fragment elimination is unfortunately performed
inside the pixel shader execution, avoiding the per-
formance gain of exploiting the hardware-accelerated
early-Z culling.

Impact of Memory Constraints. Figure 8 illustrates
the performance evaluation in terms of ms per MB
for a tested k-buffer method set when performance
and memory are of utmost importance. To construct
k-fragmentless pixels, we allow pixels to be influenced
by up to n = 10 · k fragments. Thus, we define fp
as the probability of a generated fragment not to be
discarded. We observe that K+B-ABSB is preferred
to be used for handling scenes with many empty
pixels (pd = 25%) and small numbers of rasterized
fragments (fp = 25%). When pixel and fragment
densities increase (pd = 75%, fp = 75%), K+B-ABSB
performs better than the rest memory-aware methods.
However, K+B-ABSB behavior is normally worst than
the bounded methods since it theoretically performs
slower (e.g. one extra pass, storing data in global
memory) in conjunction with the small unused mem-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 11

ory of the bounded methods. Despite the fast speed
of KB-ABSB on sparse scenes, performance is signif-
icantly reduced when generated fragments blast off
to high levels. Finally, KB-ABArray, KB-ABSB and KB-
LL fail to work when fragment allocation results in
memory overflow (k = 64).

6.3
9.3 7 9

20.5 21.6
32.8

33

76.2 71.5
232

193

11.8
10 10.1 17

24.8 24
23

43.5

19.1 17
16.1

37.4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

K
+

B
-A

rr
ay

K
+

B
-A

rr
ay

-R

K
B

-P
S

K
B

-M
D

T_
3

2

K
+

B
-A

rr
ay

K
+

B
-A

rr
ay

-R

K
B

-P
S

K
B

-M
D

T_
3

2

K
+

B
-A

rr
ay

K
+

B
-A

rr
ay

-R

K
B

-P
S

K
B

-M
D

T_
3

2

4 16 64

Ti
m

e
(m

s)

Fragment Culling Mechanism on off

Fig. 7: Performance evaluation of k-buffer variants
with and without enabling our fragment culling
mechanism for k = 4, 16, 64.

0.001

0.01

0.1

1

10

100

[4,40] [16,160] [64,640] [4,40] [16,160] [64,640]

m
s/
m
b
yt
es

K+B-Array KB-MDT_32 K+B-AB_SB KB-AB_Array KB-AB_SB KB-LL

[25%,25%] [75%,75%]

Fig. 8: Performance evaluation comparison in
ms/MB (log10 scale) of k-buffer variants when
moving from a scene with r = 10 from small number
towards a large number of generated fragments.

Impact of GPU (Synchronization). Figure 9 (left)
illustrates the performance evaluation for a tested k-
buffer method set on different graphics hardware and
synchronization implementations for fixed k = 8 and
varying n ∈ {8, 16, 32}. Initially, we observe the su-
periority of hardware-accelerated PS/FSI extensions
when compared with our SL implementation on both
NVIDIA GTX 970 and Intel Iris Pro Graphics 5200
cards, respectively. Notice that all syncing techniques
experience linear behavior when moving to higher
fragment racing. An interesting note is that K+B-
Array has even better performance than KB-PS when
syncing is hardware accelerated (Nvidia: ≈ 2×, In-
tel: ≈ 1.5×). When comparing the results on the older
(GTX 480) versus the one on the modern (GTX {780
Ti, 970}) graphics cards, we observe the enhanced
behavior of KB-MDT32 and KB-ABArray due to the
advanced atomic operations at the latter cards.

5.1.2 Depth Peeling/A-buffer Comparison
Figure 9 (right) illustrates performance comparison of
our methods against depth peeling and A-buffer al-
ternatives for a scene with varying depth complexity.
In this setting, k is set to the fragment cardinality, so
that K+B methods are able to capture all generated
fragments. We initially observe that our multi-pass
version of K+B-Array with k = {8, 32} performs better
than the widely-used F2B and DUAL methods due to
the additional rendering iterations of the latter ones.
Note that it is preferred to use F2B for handling scenes
with low geometric detail (small number of triangles)
under high resolutions [18].

We observe that the revised version of K+B-Array
alleviates the burden of the unnecessary culling mech-
anism performing better from all memory-aware A-
buffer variants and slightly worse than ABArray, the
fastest A-buffer implementation so far. Note that
l+-depth peeling improved sorting performance by
3.1×, n = 64 and 4.64×, n = 128. We omit to test K+B-
Heap since K+B-Array performs slightly better than
the former, enhanced by its constant-time insertion
process on an unfilled array. On the other hand, K+B-
ABSB is worse than ABSB in all cases. Except from
the unnecessary culling cost, the increased fragment
syncing significantly affects performance.

5.2 Memory Allocation Analysis
Table 1 presents complexity in terms of memory
consumption for all available methods that more
or less simulate the behavior of k-buffer. We ini-
tially observe that our K+B methods require slightly
more storage (8-byte) per pixel than the rest of the
memory bounded methods (KB, KB-SR, KB-PS, KB-
MDT32,64, KB-MHA) due to the additional allocation
of the counter and semaphore textures. When moving
to extreme screen resolutions this burden is notice-
able. KB, KB-Multi and KB-MHA methods need more
storage when data packing is explored (∀k > 1 :
4k > 2k + 2). K+B methods require less memory
resources when compared to the KB-SR (∀k > 2 :
3k > 2k + 2). Note that semaphore texture allocation
is further avoided when the pixel synchronization
extension is employed on Haswell or Maxwell hard-
ware. On the other hand, video-memory consumption
blasts off to high levels when A-buffer is constructed.
Observe the increased memory requirements of KB-
ABArray due to its strategy to allocate the maximum
memory per pixel p (n = maxp{f(p)} � k). KB-
ABLL, KB-LL, KB-ABSB require less storage resources
by dynamically allocating storage only for non-empty
pixels (f(p) ∈ [1, n]). Our memory-aware method
K+B-ABSB requires equal (when f(p) ≤ k) or less
(when f(p) > k) storage than the unbounded A-
buffer-based methods reducing the risk of a memory
overflow. An interesting observation is that the K+B-
Array and K+B-ABSB when extended to capture all

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 12

1

2

4

8

16

32

64

128

256

K
+

B
-A

rr
ay

K
B

-P
S

K
B

-M
D

T_
3

2

K
B

-A
B

_A
rr

ay

K
+

B
-A

rr
ay

K
B

-P
S

K
B

-M
D

T_
3

2

K
B

-A
B

_A
rr

ay

K
+

B
-A

rr
ay

K
B

-P
S

K
B

-M
D

T_
3

2

K
B

-A
B

_A
rr

ay

K
+

B
-A

rr
ay

K
B

-P
S

K
B

-M
D

T_
3

2

K
B

-A
B

_A
rr

ay

K
+

B
-A

rr
ay

K
B

-P
S

K
B

-M
D

T_
3

2

K
B

-A
B

_A
rr

ay

K
+

B
-A

rr
ay

K
B

-P
S

K
B

-M
D

T_
3

2

K
B

-A
B

_A
rr

ay

GTX 480 (SL) GTX 780 Ti (SL) GTX 970 (SL) GTX 970 (FSI) Iris Pro 5200 (SL) Iris Pro 5200 (PS)

Ti
m

e
(m

s)

8 16 32

1
2
4
8

16
32
64

128
256
512

F2
B

D
U

A
L

K
+B

-A
rr

ay
(8

)

K
+B

-A
rr

ay
(3

2
)

K
+B

-A
rr

ay

K
+B

-A
rr

ay
-R

K
+B

-A
B

_S
B

A
B

_
A

rr
ay

A
B

_
LL

A
B

_
SB

depth peeling k-buffer A-buffer

Ti
m

e
(m

s)

16 64 128

Fig. 9: Performance evaluation in ms (log2 scale) of (left) k-buffer alternatives on different graphics hardware
and syncing implementations and (right) depth peeling and A-buffer alternatives on scenes with varying n.

Performance

Acronym Description Geometry Passes on primitives on fragments Max k Artifacts Per Pixel Allocation Fixed

KB Initial k -buffer implementation [20],[42] 1 STORE
MRT Hazards,

Geom. Interpen.
2k; 4k ;

KB-Multi Multi-pass k -buffer [23] 1 to k RESOLVE 2k; 4k ;

KB-SR Stencil routed k -buffer [21] 1 RESOLVE 32 3k

KB-PS k -buffer using pixel synchronization [24] 1 STORE - 2k

K+B-Array k +-buffer using max-array 1 RESOLVE - 2k + 2

K+B-Heap k +-buffer using max-heap 1 RESOLVE - 2k + 2

KB-MDT32 Multi depth test scheme (32 bit) [22],[28] 2 STORE - 2k

KB-MDT64 Multi depth test scheme (64 bit) [45] 1 STORE -
Can store only

32bit color
2k

KB-MHA Memory-hazard-aware k -buffer [43] 1 STORE 8; 16
MRT Hazards,

Geom. Interpen.
2k; 4k ;

KB-ABArray k -buffer based on A-buffer (fixed-size arrays) 1 RESOLVE - 2n + 1

KB-ABLL k -buffer based on A-buffer (dynamic linked lists) [9],[47] 1 RESOLVE - 3f + 1

KB-LL k -buffer based on Linked Lists [9] 1 STORE - 3f + 6

KB-ABSB k -buffer based on S-buffer (variable-contigious regions) 2 RESOLVE - 2f + 2

K+B-ABSB k +-buffer based on S-buffer (variable-contigious regions) 2 RESOLVE - 2fk + 3

MemoryPeeling AccuracySorting need

8; 16

Algorithm

memory

overflow

risks

Geom. Interpen.

In A ; B, A denotes the layers/memory for the basic

method and B for the variation using attribute

packing

f(p) = # fragments at pixel p[x,y]

fk(p) = (f(p) < k) ? f(p) : k fk(p) ≤ k

n = maxx,y{f(p)}

...

TABLE 1: Comprehensive comparison of the prior k-buffer approaches and the introduced k+-buffer variants.
Intuitively, more stars indicate larger memory requirements. Fragment sorting column indicates in which stage
depth-ordering takes place.

fragments (k = n) require the same storage compared
to the ABArray and ABSB methods, respectively. Finally,
the tiny histogram allocation (4KBytes, resolution-
independent) is the only storage demand when the
dynamic k process is enabled.

5.3 Image Quality Analysis
Figure 10 shows the image differences of KB, KB-
SR, KB-MDT32, KB-LL and KB-ABArray methods when
compared with the ground truth on rendering Hair-
ball (180 max layers) with k = 16 (supported by
all tested methods). Noticeable quality downgrade is
observed in the bottom three images due to RMW
hazards of (left) KB and (center) KB-SR methods
as well as (right) depth conversion artifacts of KB-
MDT32. KB-LL is consistently constrained to guar-
antee an infinite loop-free behavior from repeated
failed insertions of candidate fragments. (top, center)
This results in a noticeable fragment loss. To avoid
memory overflow of KB-ABArray, we must allocate less
storage (120 layers) than we actually need leading at
(top, right) an information loss for a small pixel set.

K+B-Array KB-LL KB-ABArray

KB KB-SR KB-MDT32

Fig. 10: Heatmap-coded differences between the im-
age generated using K+B-Array against the outputs
of several k-buffer variants.

Considering completeness, KB, KB-SR, KB-MHA
and KB-MDT64 are limited to produce visual effects
exploiting fragment features that can be compressed

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 13

to a 32-bit compact vector. Finally, k+-buffer may eas-
ily be adapted to support multi-sample anti-aliasing
(MSAA) by following the widely-accepted fragment
coverage-based strategy [5].

6 CONCLUSIONS

We have introduced k+-buffer, an improved pixel-
synchronized and fragment culling-aware k-buffer
framework built on two novel bounded array data
structures maintained on the GPU. An additional
geometry rendering may be also carried out to avoid
the tedious task of manually tweaking the value of
k by predicting a suitable value via on-the-fly depth
complexity histogram analysis. A precise memory
allocation strategy has also been incorporated into the
proposed pipeline, tailoring storage utilization to the
depth complexity of individual pixels. Implementa-
tion details and light-weight alternative implemen-
tations of various steps have been also provided to
enable full support of our system on various GPU
architectures. An extensive experimental comparison
has demonstrated the superiority of our framework as
compared to previous k-buffer solutions with regard
to memory, performance and image quality.

Further directions may be explored for tackling the
problem of visibility determination in multi-fragment
rendering solutions. While our fragment outlier rejec-
tion mechanism is a key feature to our framework,
additional research has to be conducted to alleviate
its order-dependence performance nature. Addition-
ally, fragment culling acceleration may be achieved
by taking advantage of temporal coherence across
adjacent frames [50]. Finally, our framework can be
combined with an attention-based level-of-detail man-
ager to downgrade fragment storage in areas that are
expected to go unnoticed by an observer [51].

ACKNOWLEDGMENTS

Thanks to Anthousis Andreadis and the rest of AUEB
Computer Graphics Group for their contributions and
support. Andreas Vasilakis was supported by hard-
ware donations from Intel. Stanford dragon and hairball
models were downloaded from Morgan McGuire’s
Computer Graphics Archive. Marbles animation was
obtained from the University of Utah 3D Animation
Repository. We would like to thank Louis Bavoil for
providing us the motor engine mesh. This research has
been co-financed by the European Union (European
Social Fund - ESF) and Greek national funds through
the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Frame-
work (NSRF) - Research Funding Program: ARISTEIA
II-GLIDE (grant no.3712). Andreas Vasilakis is the
corresponding author.

REFERENCES

[1] Y. Tokuyoshi, T. Sekine, T. da Silva, and T. Kanai, “Adaptive
ray-bundle tracing with memory usage prediction: Efficient
global illumination in large scenes,” Computer Graphics Forum,
vol. 32, no. 7, pp. 315–324, 2013.

[2] M. Salvi and K. Vaidyanathan, “Multi-layer alpha blending,”
in Proceedings of the 18th Meeting of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, ser. I3D ’14.
New York, NY, USA: ACM, 2014, pp. 151–158.

[3] K. E. Hillesland, B. Bilodeau, and N. Thibieroz, “Deferred
shading for order-independent transparency,” in Proceedings of
Eurographics 2014 Short Papers, ser. EG ’14. The Eurographics
Association, 2014, pp. 49–52.

[4] L. Szécsi, P. Barta, and B. Kovács, “Volumetric transparency
with per-pixel fragment lists,” GPU PRO 3: Advanced Rendering
Techniques, p. 323, 2012.

[5] J. C. Yang, J. Hensley, H. Grun, and N. Thibieroz, “Real-time
concurrent linked list construction on the GPU,” Computer
Graphics Forum, vol. 29, no. 4, pp. 1297–1304, 2010.

[6] R. Carnecky, R. Fuchs, S. Mehl, Y. Jang, and R. Peikert,
“Smart transparency for illustrative visualization of complex
flow surfaces,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 5, pp. 838–851, May 2013.

[7] D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl,
“Rendering molecular surfaces using order-independent trans-
parency,” in Proceedings of the 13th Eurographics Symposium on
Parallel Graphics and Visualization, ser. EGPGV ’13. Aire-la-
Ville, Switzerland: Eurographics Association, 2013, pp. 33–40.

[8] J. Parulek and A. Brambilla, “Fast blending scheme for molec-
ular surface representation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 19, no. 12, pp. 2653–2662, Dec. 2013.

[9] X. Yu, J. C. Yang, J. Hensley, T. Harada, and J. Yu, “A
framework for rendering complex scattering effects on hair,”
in Proceedings of the 2012 symposium on Interactive 3D Graphics
and Games, ser. I3D ’12. NY, USA: ACM, 2012, pp. 111–118.

[10] Y.-S. Leung and C. C. L. Wang, “Conservative sampling of
solids in image space,” IEEE Compututer Graphics and Applica-
tions, vol. 33, no. 1, pp. 32–43, Jan. 2013.

[11] N. K. Govindaraju, M. Henson, M. C. Lin, and D. Manocha,
“Interactive visibility ordering and transparency computations
among geometric primitives in complex environments,” in
Proceedings of the 2005 Symposium on Interactive 3D Graphics
and Games, ser. I3D ’05. NY, USA: ACM, 2005, pp. 49–56.

[12] E. Sintorn and U. Assarsson, “Real-time approximate sorting
for self shadowing and transparency in hair rendering,” in
Proceedings of the 2008 Symposium on Interactive 3D Graphics
and Games, ser. I3D ’08. NY, USA: ACM, 2008, pp. 157–162.

[13] G. Chen, P. V. Sander, D. Nehab, L. Yang, and L. Hu, “Depth-
presorted triangle lists,” ACM Trans. Graph., vol. 31, no. 6, pp.
160:1–160:9, Nov. 2012.

[14] J. Huang and M. B. Carter, “Interactive transparency rendering
for large cad models,” IEEE Transactions on Visualization and
Computer Graphics, vol. 11, no. 5, pp. 584–595, Sep. 2005.

[15] J. Rossignac, I. Fudos, and A. A. Vasilakis, “Direct rendering
of boolean combinations of self-trimmed surfaces,” Computer
Aided Design, vol. 45, no. 2, pp. 288–300, Feb. 2013.

[16] C. Crassin, “Linked lists of fragment pages,” 2010.
[17] A. A. Vasilakis and I. Fudos, “S-buffer: Sparsity-aware multi-

fragment rendering,” in Proceedings of Eurographics 2012 Short
Papers, ser. EG ’12, Cagliari, Sardinia, Italy, 2012, pp. 101–104.

[18] A.-A. Vasilakis and I. Fudos, “Depth-fighting aware methods
for multifragment rendering,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 19, no. 6, pp. 967–977, 2013.

[19] M. Maule, J. L. Comba, R. P. Torchelsen, and R. Bastos, “A
survey of raster-based transparency techniques,” Computers &
Graphics, vol. 35, no. 6, pp. 1023 – 1034, 2011.

[20] L. Bavoil, S. P. Callahan, A. Lefohn, J. L. D. Comba, and C. T.
Silva, “Multi-fragment effects on the GPU using the k-buffer,”
in Proceedings of the 2007 Symposium on Interactive 3D Graphics
and Games, ser. I3D ’07. NY, USA: ACM, 2007, pp. 97–104.

[21] L. Bavoil and K. Myers, “Deferred rendering using a stencil
routed k-buffer,” ShaderX6: Advanced Rendering Techniques, pp.
189–198, 2008.

[22] M. Maule, J. Comba, R. Torchelsen, and R. Bastos, “Hybrid
transparency,” in Proceedings of the 2013 Symposium on Interac-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 14

tive 3D Graphics and Games, ser. I3D ’13. New York, NY, USA:
ACM, 2013, pp. 103–118.

[23] B. Liu, L.-Y. Wei, Y.-Q. Xu, and E. Wu, “Multi-layer depth peel-
ing via fragment sort,” in Proceedings of 11th IEEE International
Conference on Computer-Aided Design and Computer Graphics,
2009, pp. 452–456.

[24] M. Salvi, “Advances in real-time rendering in games: Pixel
synchronization: Solving old graphics problems with new data
structures,” in ACM SIGGRAPH 2013 Courses, ser. SIGGRAPH
’13. New York, NY, USA: ACM, 2013.

[25] Z. Bolz and M. Heyer, “OpenGL extension:
GL NV fragment shader interlock,” 2014.

[26] A. A. Vasilakis and I. Fudos, “k+-buffer: Fragment synchro-
nized k-buffer,” in Proceedings of the 18th Meeting of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ser. I3D ’14. New York, NY, USA: ACM, 2014, pp. 143–150.

[27] L. Carpenter, “The A-buffer, an antialiased hidden surface
method,” in Proceedings of the 11th Annual Conference on Com-
puter Graphics and Interactive Techniques, vol. 18, no. 3. ACM
New York, NY, USA, 1984, pp. 103–108.

[28] N. Thibieroz, “Order-independent transparency using per-
pixel linked lists,” GPU Pro 2, pp. 409–431, 2011.

[29] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “FreePipe:
a programmable parallel rendering architecture for efficient
multi-fragment effects,” in Proceedings of the 2010 Symposium
on Interactive 3D Graphics and Games, ser. I3D ’10. New York,
NY, USA: ACM, 2010, pp. 75–82.

[30] C. Crassin, “Fast and accurate single-pass A-buffer,” 2010.
[31] M. Maule, J. L. Comba, R. Torchelsen, and R. Bastos, “Memory-

optimized order-independent transparency with dynamic
fragment buffer,” Computers & Graphics, vol. 38, pp. 1 – 9, 2014.

[32] A. Patney, S. Tzeng, and J. D. Owens, “Fragment-parallel
composite and filter,” Computer Graphics Forum, vol. 29, no. 4,
pp. 1251–1258, 2010.

[33] P. Knowles, G. Leach, and F. Zambetta, “Efficient layered
fragment buffer techniques,” in OpenGL Insights, P. Cozzi and
C. Riccio, Eds. CRC Press, 2012, pp. 279–292.

[34] P. Knowles, G. Leach, and F. Zambetta, “Fast sorting for exact
oit of complex scenes,” The Visual Computer, vol. 30, no. 6-8,
pp. 603–613, 2014.

[35] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “Efficient depth
peeling via bucket sort,” in Proceedings of the 2009 Conference
on High Performance Graphics, ser. HPG ’09. New York, NY,
USA: ACM, 2009, pp. 51–57.

[36] E. Sintorn and U. Assarsson, “Hair self shadowing and trans-
parency depth ordering using occupancy maps,” in Proceedings
of the 2009 Symposium on Interactive 3D Graphics and Games, ser.
I3D ’09. New York, NY, USA: ACM, 2009, pp. 67–74.

[37] S. Lindholm, M. Falk, E. Sundn, A. Bock, A. Ynnerman, and
T. Ropinski, “Hybrid data visualization based on depth com-
plexity histogram analysis,” Computer Graphics Forum, 2014.

[38] P. Knowles, G. Leach, and F. Zambetta, “Backwards Memory
Allocation and Improved OIT,” in Proceedings of Pacific Graph-
ics 2013 (Short Papers), ser. PG ’13, October 2013, pp. 59–64.

[39] C. Everitt, “Interactive order-independent transparency,”
Nvidia Corporation, Tech. Rep., 2001.

[40] L. Bavoil and K. Myers, “Order independent transparency
with dual depth peeling,” Nvidia Corp., Tech. Rep., 2008.

[41] D. Wexler, L. Gritz, E. Enderton, and J. Rice, “GPU-accelerated
high-quality hidden surface removal,” in Proceedings of the 2005
conference on Graphics Hardware, ser. HWWS ’05. New York,
NY, USA: ACM, 2005, pp. 7–14.

[42] N. Carr, R. Měch, and G. Miller, “Coherent layer peeling for
transparent high-depth-complexity scenes,” in Proceedings of
the 2008 Symposium on Graphics Hardware, ser. GH ’08. Aire-la-
Ville, Switzerland: Eurographics Association, 2008, pp. 33–40.

[43] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva,
“Hardware-assisted visibility sorting for unstructured volume
rendering,” IEEE Transactions on Visualization and Computer
Graphics, vol. 11, no. 3, pp. 285–295, May 2005.

[44] N. Zhang, “Memory-hazard-aware k-buffer algorithm for
order-independent transparency rendering,” IEEE Trans. on
Visualizat. and Comput. Graph., vol. 20, no. 2, pp. 238–248, 2014.

[45] W. Wang and G. Xie, “Memory-efficient single-pass GPU ren-
dering of multifragment effects,” IEEE Transact. on Visualization
and Computer Graphics, vol. 19, no. 8, pp. 1307–1316, 2013.

[46] C. Kubisch, “Order independent transparency in OpenGL 4.x,”
in GPU Technology Conference 2014, ser. GTC ’14, 2014.

[47] P. Brown, Z. Bolz, C. Crassin, and C. Kubisch, “OpenGL
extension: GL nv shader atomic int64,” 2014.

[48] M. Salvi, J. Montgomery, and A. Lefohn, “Adaptive trans-
parency,” in Proceedings of the 2011 Symposium on High Per-
formance Graphics. NY, USA: ACM, 2011, pp. 119–126.

[49] L. Hrabcak and A. Masserann, “Asynchronous buffer trans-
fers,” in OpenGL Insights, P. Cozzi and C. Riccio, Eds. CRC
Press, 2012, pp. 391–414.

[50] D. Scherzer, L. Yang, O. Mattausch, D. Nehab, P. V. Sander,
M. Wimmer, and E. Eisemann, “Temporal coherence methods
in real-time rendering,” Computer Graphics Forum, vol. 31, no. 8,
pp. 2378–2408, Dec. 2012.

[51] S. Lee, G. J. Kim, and S. Choi, “Real-time tracking of visually
attended objects in virtual environments and its application to
LOD,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 1, pp. 6–19, Jan. 2009.

Andreas-Alexandros Vasilakis received his
PhD degree on the field of Computer Graph-
ics from the Department of Computer Sci-
ence & Engineering of the University of Ioan-
nina in Greece, under the supervision of Prof.
Ioannis Fudos. He has also received MSc
and BSc degrees from the same institution
in 2008 and 2006, respectively. Since March
2014, he has joined the Graphics Group at
the Department of Informatics in Athens Uni-
versity of Economics and Business, where he

is currently working on interactive framebuffer techniques as well as
inverse lighting and global illumination problems.

Georgios Papaioannou received a BSc
in Computer Science in 1996 and a PhD
degree in Computer Graphics and Pattern
Recognition in 2001, both from the Univer-
sity of Athens, Greece. He is currently an
assistant professor at the Department of In-
formatics of the Athens University of Eco-
nomics and Business and his research is
focused on real-time computer graphics algo-
rithms, photorealistic rendering, virtual real-
ity, 3D pattern recognition and computational

archaeology. Since 1997, he has worked as a research fellow and
principal investigator in many national and EU-funded research and
development projects. Prof. Papaioannou is also a member of ACM,
SIGGRAPH, Eurographics Association and has been a member of
the program committees of many conferences in the above fields.

Ioannis Fudos received the diploma in com-
puter engineering and informatics from the
University of Patras, Greece, in 1990 and the
MSc and PhD degrees in computer science
both from Purdue University in 1993 and
1995, respectively. He is an associate pro-
fessor in the Department of Computer Sci-
ence & Engineering at the University of Ioan-
nina. His research interests include anima-
tion, rendering, morphing, CAD systems, re-
verse engineering, geometry compilers, solid

modeling, and image retrieval. He has published in well established
journals and conferences and has served as reviewer in various
conferences and journals. He has received funding from EC, the
General Secretariat of Research and Technology, Greece, and the
Greek Ministry of National Education and Religious Affairs. He is a
member of the IEEE.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.21, NO. X, XXXX 2015 15

APPENDIX

In this appendix, we provide an analytic pseudo-code
description of the l+-depth-sorting algorithm (more
details at Section 4.4), essential component of the
updated k+-buffer pipeline (see also Figure 5 and
Algorithm 3).

Algorithm 4 l+-depth-sorting (Array a, Pixel p, Int s)

1: Array l[s]; . allocate local array of length s
2: for i := 0 to dp.counter/se do . total iterations
3: num := 0; l[s− 1].z := 1.0; prev max z = 0.0;
4: for j := 0 to p.counter do . traverse global memory
5: if a[j].z < prev max z then
6: continue; . cull processed fragments
7: end if
8: if num < s− 1 then
9: l[num++] := a[j]; . insert to unfilled array

10: else if a[j].z < l[s− 1].z then
11: l[find max()] := a[j]; . insert to full array
12: end if
13: end for
14: prev max z := l[s− 1].z;
15: if num ≤ 16 then . hybrid sorting
16: insertion sort(l, num);
17: else
18: shell sort(l, num);
19: end if
20: compute effect(l, num); . fragment composition
21: end for
. where find max() returns the index of the maximum value at l

