
An Interactive Tool Suite for Embossing 2D Images

George Antonopoulos
Department of Computer Science,

University of Ioannina
Ioannina, Greece

email: gantonop@cs.uoi.gr

Abstract -- We report on the development of a tool suite for
rapidly creating high quality 3D embossed portraits using a
single 2D snapshot. Our goal is to establish a mapping from 2-
D to 3D and then interactively edit the embossed 3D surface
and correct any artifacts that have occurred. To establish the
initial mapping, we use an enhanced grayscale representation
of the image and then employ techniques such as edge
detection, region growing and interactive-iterative
enhancement to obtain an flawless 3D embossing surface.
Finally, we present an evaluation of the usability of our
embossing tool suite.

Keywords -- embossing, usability, lightness, luminance, region
selection, region growing, interactive

I. INTRODUCTION
Rapid embossing of portraits and patterns is a process
central to jewelry design. Usually, it is not possible to
extract accurate information for a 3D representation with
our only data source being a 2D snapshot. Nevertheless, a
2D image contains different types of information which we
exploit to achieve our goal. The information of the image
that we use to obtain an initial embossing surface is: a) the
XY-plane distribution b) the luminance, c) the edges, d) the
value of the pixel colors. For each of these information
types, we adapt several methods for their extraction and
interpolation and we describe how they can be used to
produce a 3D embossing surface.

There are several commercial applications which
perform the task of embossing. All of them provide some
initial result but inadequate or no tools for further model
refinement. The most renowned one is ArtCam [11] which
yields very good results, has some refinement tools, but
does not provide the fast detailed local control tools as our
approach does. Another commercial product is MeshCam
[10] which follows a more traditional CAD/CAM design
process and is fit for designing sophisticated patterns
capable of being embossed by accurate CNC machines.

Other products are, 3DMaker [12], VS3D [13] and
Geomagic Studio [14] which employ a global conversion
method with options for improving the final embossing
surface but lack the tools for further interactive editing and
improvement. Finally, classical embossing techniques in the
context of image processing create an anaglyph of the edges
of an image and therefore cannot be compared to our tool
suite.

Holoimages [15], an elaborate technique, has also been
proposed for the embossing task. It involves the capturing in
a picture of the model to be embossed, along with a light

Ioannis Fudos
Department of Computer Science

University of Ioannina
Ioannina, Greece

email: fudos@cs.uoi.gr

interference pattern projected on it. The processing of the
resulting image uses the pattern projected on the object to
extract its depth and provide us with an embossing. This
method uses extra information derived from the deformation
of the projected light pattern on the object. Our method uses
a single 2D snapshot of the figure that we wish to emboss.

The rest of this paper is organized as follows. Section 2
presents the initial transition from 2D to 3D using a
straightforward mesh creation based on the image size, the
luminance and the lightness attributes. Section 3 introduces
our interactive region selection algorithms, while Section 4
describes the employment of smoothing algorithms for
eliminating artifacts and improving the quality of the overall
embossing surface. Section 5 presents an evaluation of the
usability of our technique and finally Section 6 offers
conclusions.

II. OBTAINING THE INITIAL 3D MAPPING
The first step in the creation of our embossing is the

transformation of the picture from 2D to 3D. In order to
achieve that we a) extract 3D points from the picture, b)
triangulate these points.

This is accomplished by considering the image as a
uniform point distribution in 3D with the Z coordinate
(depth) pinned to 0. Thus each pixel is mapped to a point in
3D.

As for the triangulation, it is straightforward to obtain a
triangulation with congruent triangles: every 4 pixels form
an Undirected Cyclic Graph containing 2 triangular facets.
Fig. 1 depicts this concept:

(x,y,0) (x+1,y,0) (x+2,y,0)

Facet 4 Facet 2

Facet 3 Facet 1

(x,y+1,0) (x+1,y+1,0) (x+2,y+1,0)

Figure 1. Triangulation

For an image of width and height , we get: w h

 2((1) 1)(1)w h− −

triangular facets.
The basic step of the whole process is based on the,

seemingly rational, observation that those areas of a portrait
positioned higher should be more intensively lit than those
at lower height. What we need is a mean of calculating the
quantity of light that a pixel carries. That mean is
“luminance” and, the process of deriving it is “lightness”. In
the rest of this section we describe how we use these
measures to produce an initial approach of our embossing
and how we can refine the results of this approach.

A. Lightness on Grayscale
The color of an image pixel is a composition of the three

basic colors (R) red, (G) green, (B) blue, with each one
ranging from 0 (minimum intensity) to 255 (maximum
intensity). Thus, the color attribute is a vector in the 3D
RGB space.

We use the “Generalized Lightness Hue and Saturation
(GLHS)” [1] model where the luminance Y of a pixel
springs from the following formula [2]:

c

 Y=0.2125R+0.7154G+0.0721B (2)

Y is linear on the RGB color elements of light and the
coefficients are determined experimentally from the real-
world sensitivity of the human eye to each element of light.
We use luminance in order to obtain lightness. According to
CIE, Lightness (*L) of a pixel is given by the following
formula [8][9]:

* 116 (/) 16nL f Y Y= − (3)

 where

1
33

3

24() () , () ()
116

841 16 24() () () , () ()
108 116 116

n n n

n n n

Y Y Yf
Y Y Y
Y Y Yf
Y Y Y

= >

= + ≤
 (4)

Yn is Luminance quantity which serves as a reference to
which the Luminance Y of the current pixel is compared.
The Luminance of white serves as a reference in our
calculations which means that we set R=G=B=255 in
equation (2). The above method yields a grayscale
representation of our picture, where the color value of each
pixel is equal to its Lightness.

By using equation (3) we have computed the quantity
which intuitively would represent the depth of an image in
3D. The result of this process is shown in Fig. 2. There we
can see the initial approach of our method to the given

picture where Lightness is used to provide the depth of the
corresponding pixel.

At the top-right is the image used for embossing. The top
left panel illustrates the resulting 3D representation.

Figure 2. Initial approach

B. Refinement
The results of our initial approach are often unintuitive

and undesirable. Notice large distance between the highest
point and the XY plane (Depth=0) and the fact that
neighboring points may exhibit large depth variations.

To this end, we perform a Z axis scaling so as to reduce
pixel depths without affecting the image ratio. This is
realized by dividing all depths by the same number. Fig. 3
shows the results of the scaling for various scaling.

Figure 3. Scaling Trials. a) Division by 1 (initial), b) Division by 2, c)
Division by 4

As we can see scaling considerably improves the initial
3D mapping. Note that for very small scaling factors the 3D
mapping will become almost flat.

III. REGION SELECTION TOOLS
The initial 3D embossing surface may contains serious

imperfections and artifacts. These mostly appear in areas
with low lightness, which is a result of their color (spots,
moles, hairy parts etc). Therefore, we need tools for
determining such areas and then interactively editing their
morphology. We exploit to two more types of information
that an image provides: a) edges, and b) pixel color. We

shall also provide a method for free sketching to give the
user the ability to manually define a region for editing.

A. Edges and Edge Detection
Edges can be used to spatially define areas which, due to

their color, yielded a false initial approach. To detect which
pixels fall within edge regions, we use the following
common Edge Detection Algorithms: a) Robert’s Cross
Edge Detection [3], b) Sobel Edge Detection [3][6] and c)
Canny Edge Detection [3][4].

1) Robert’s Cross: Robert’s Cross is an algorithm
which uses 2x2 convolution kernels (Fig. 4). This choice of
kernels makes Robert’s Cross a fast algorithm but sensitive
to noise. Fig. 5 shows a result of this algorithm to an image,
as well as a histogram of edge-value distribution.

Figure 4. Robert’s Cross’s Convolution Kernels

Figure 5. Edge Detection by Robert’s Cross Algorithm

2) Sobel: Sobel is a widely used high quality
algorithm. It uses 3x3 convolution kernels (Fig. 6) which
increase its execution time but reduce its susceptibility to
noise. Fig. 7 shows a result of applying this algorithm to a
picture, as well as a histogram of edge-value distribution.

Figure 6. Sobel’s Convolution Kernels

Figure 7. Edge Detection by Sobel Technique

3) Canny: Canny’s algorithm recognizes true edges
but ignores some which might prove useful. Fig. 8 shows a
result of applying this algorithm to a picture as well as a
histogram of edge-value distribution.

Figure 8. Edge Detection by Canny’s Method

Fig. 9 shows two examples of Edge Detection usage.

(a)

(b)

Figure 9. a) Usage of Sobel’s method, b) results of Canny’s method

B. Pixel Color
We use the initial pixel color information to define

chromatic areas on the face and perform modifications to the
corresponding areas of the 3D representation. Fig. 10 shows
an example of such an area definition.

Figure 10. Finding of Chromatic Regions

To detect these areas, we used a variation of a simple
region growing algorithm [7]:

For each pixel around a seed pixel, we check it’s 8
neighboring (8-connected) ones and we name a pixel as a
region limit if either (a) each RGB component of its color
deviates from the corresponding component value of the
seed by a threshold that is set by the user or (b) the pixel’s
spatial Euclidean distance from the seed is larger than a
given limit set adaptively by the tool.

C. Free Sketching
There is often a need for free area definition. Especially

when we need to perform smoothing on regions where
significant localized depth variations occur which cannot be
caught by Edge Detection. Fig. 11 shows such a case. Non-
Convex areas are discarded while gaps between the starting
and ending point are interpolated linearly by an efficient
algorithm (e.g. Bresenham’s [5] algorithm).

Figure 11. Free Sketching

IV. SURFACE ENHANCEMENT TOOLS
In this section we describe the development of methods

to edit the morphology of the selected areas, to enhance the
quality of our embossing surface. We use three methods
which exploit the algorithms we have developed for area
selection: i) Depth modification of a specific point (seed)

along with a specified area around it, ii) Depth modification
of an area, selected via our area selection algorithms, iii)
Smoothing of a selected area using various smoothing
filters.

A. Depth Modification of Specific Point
This algorithm serves the purpose of helping the user to

intervene into the morphology of small areas. Such areas
could be spots or moles or defects produced by noise. In a
sense this is a region selection algorithm too with the
difference that the region cannot exceed certain limits. The
algorithm could be useful even for larger areas provided that
more than one point will be selected for modification. The
basic characteristic of the algorithm is that, while the seed’s
depth gets modified, so is a specific area around it, using
linear interpolation. In the following section we will
describe the steps of the algorithm.

1) Finding Seed’s Neighboring Points and Seed’s
Neighborhood Border Points: The borders of the
neighborhood around a seed point are either points
belonging to edges or points whose Euclidian distance from
the seed is greater than a predefined threshold. In order to
find both the neighborhood and border points we perform
the following variation of a Region Growing algorithm:

• If borders are defined by edges (computed by some
edge detection algorithm) then we consider as
border those points of the neighborhood that, after
edge detection, correspond to pixels that fall within
edge areas or their Euclidian distance from the seed
exceeds a given threshold.

• If borders are defined by the Euclidian distance
from the seed then we consider as border those
points of the neighborhood whose Euclidian
distance from the seed is greater than a given
threshold.

At the same time we define as inner neighborhood points
those points contained within the borders. As far as editing
is concerned, only the inner neighborhood points are
modified along with the seed.

Fig. 12 gives us an example of selecting a region around
a specific point with borders selected by Euclidian distance.
Border points are the highlighted in red, while inner
neighborhood points are highlighted white. Seed is shown in
cyan.

Figure 12. Region Selection around a Point Based on Euclidian Distance

2) Associating Inner Points to Border Points: To
maintain the surface morphology during editing we
associate each inner point with a border point. As described
later, the topology maintained is that of the distance
between the seed and the inner point to be modified and the
distance between the inner point and its associated border.

The mapping is performed as follows. We project all
neighborhood points to the XY plane. We compute the
equation of the line that passes through the seed and the
inner point to be mapped (denoted by P). We denote this
line by SP (seed-P).

We then project the border points on that line and we
associate the inner point to the border whose distance from
the line is the smallest and its projection point lies on the ray
of SP from seed to P.

 Figure 13: Associating an Inner Point to a Border Point.

In Fig. 13, the winning border should be B3 since its
distance from SP, while not the smallest (B1’s is), is the
smallest of a border whose projection is on the ray from
seed towards P (B1’s projection on the line is before seed).

Each border point may have more than one inner points
associated with it. Borders that at the end of the mapping
process have no inner points attached to them will be
removed from the editing area.

3) Adjusting Inner Point Modification According to
Seed Modification: Seed point is chosen explicitly by the
user, who also modifies its depth. As the depth of the seed is
modified, the inner points of the neighborhood around the
seed should also undergo a depth adjustment in a way that
preserves the local topology. To compute the adjustment we
apply the following procedure which is also illustrated in
Fig. 14.

Given the fact that point modification takes place along
the Z-axis, we project the points to the YZ plane. Every
inner point P has a fixed Y coordinate and resides on the
line y=Py. Note that only inner neighborhood points are
modified.

Prior to seed modification, we compute the intersection
of the y line with the line defined by the seed point and the
associated border point of P. We denote as PA this
intersection. We then perform the desired modification of
the Seed point and compute the point of the intersection
again. We name that point PB. The modification that should

be applied to P is equal to the distance d(PA, PB) between
the two intersections.

Figure 14. Computing Modification Quantity

The above procedure ensures that all 3D point
modifications are combined with neighboring point
adjustments that maintain the surface topology. It is now
possible to intervene to various points of an area and modify
their depth appropriately. Fig. 15 gives an example of such
an editing operation.

Figure 15: Point Modification Example

It becomes apparent from the top pictures of Fig. 17 that
if the seed is positioned lower along the Z-axis than its
neighbors, depth increase followed by simultaneous depth
increase of the neighbors yields in an undesirable result. To
cope with this case, we provide the ability to impose a
restriction to the height of the neighboring points that have
the right to be modified. More specifically, no neighboring
point is gets modified before the seed reaches its height. Fig.
16 depicts an example of applying that restriction.

Figure 16. Restricted Modification of Neighboring Points

Y

y=P.y

Z Seed’

PB
d(PA,PB) Seed

PA
B1

P

B3 SP

P
Seed

B2

B1

B. Selected Area Modification
This method allows us to adjust the depth of entire areas.

It is particularly useful for large areas that share some
attribute (e.g. hair). Fig. 17 shows an operation of editing
the area that corresponds to the hair of a profile snapshot.

Figure 17. Area Depth Modification

C. Selected Area Smoothing Using Smoothing Filters
Every method discussed so far modifies the morphology

of our 3D model without guarantying that the result will be
uniform enough to be acceptable. Given that our 3D
representation is based on 2D it is safe to assume that rapid
local depth variations are actually noise. To eliminate that
noise we provide the user with smoothing tools:

1) Mean Filter: For each point of an area we compute
the average of its neighboring points depth (Lightness), with
the seed point included. The size of the neighborhood is
defined by the user

2) Median Filter: The difference between the Mean
and the Median filter is that the dimensions of the kernel
define the area around the seed from which we gather depth
values, position them in ascending order and choose as new
value of the seed the depth that is positioned in the middle.

3) Gaussian Filter: In this method the convolution
kernel is selected such that it represents a Gaussian cavity
(bell shaped). The Gaussian distribution is given by the
following formula:

2 2

22
2

1(,)
2

x y

G x y e σ

πσ

+
−

=

(5)

which it turns out to be described by the convolution kernel
depicted on Fig. 18.

Figure 18. Gaussian Filter Kernel

4) Conservative Filter: This is a variation o the
Median Filter. The seed’s value is compared to the
maximum and minimum of the ordering. If it falls between
it remains unchanged. If it is bigger than the maximum or
smaller than the minimum it is replaced by the
corresponding one. Fig. 19 illustrates the result of the area
smoothing using Mean Filter after applied to the whole
surface.

Figure 19. Smoothing using Mean Filter

V. APPLICATION EVALUATION
The evaluation of our application was conducted through

a training procedure. Several users after having undergone
supervised training on how to use the program, have
produced an embossing with the guidance of the developer,
and then they were left to repeat the procedure by
themselves, having only the manual as a guide. In the end
they were asked to fill in a questionnaire, so as to evaluate
the software by grading several aspects from 0 (weak) to 7
(strong). They were also asked to emphasize on some weak
and strong features of the program. The questions about the
program revolved around two of the major characteristics of
software design, Learnability and Robustness and the three
standards of Satisfaction, Efficiency and Effectiveness. The
results are shown in Fig. 20. Note that Lernability consists
of Predictability, Familiarity, Generalizability and
Consistency, while Robustness consists of Observability,
Recoverability and Task Conformance.

Effectiveness metrics reveal the ability of our tool suite
to perform the embossing task with adequate preciseness.
The general notion among the users was that the application
provides enough tools to perform the task and that they
could revert to various combinations of tools for performing
this task. Finally, the majority of the users pointed out that,
although they had to put in a certain amount of effort to
produce a final outcome, the results were overall
satisfactory.

Figure 20. Evaluation Results

VI. RESULTS AND CONCLUSIONS
To obtain better results faster, the user should set certain
lighting conditions as well as an appropriate camera angle.
The lighting of the picture should allow the face to have
shades. An ambient lighting for example would result in
weak shading, rendering our method inadequate. A
directional light (e.g. sunlight) would also give poor results.
The ideal light condition appear to be under a Point Light
such as a lamp, in which every light ray has different angle
from the others illuminating differently as they hit the face.
Additionally the light source should be as close to the
camera eye as possible.

We provide results of our method in various face
positions. The images used are shown in Fig 21. It is
important to place the object to be embossed in a uniform
background (ideally dark). This would help our area
selection methods to select and modify the depth of the
background. Nevertheless it is possible that some
preprocessing of an image is required.

Fig. 22 shows the 3D representations (initial approaches)
of the pictures after the applying of scaling. As it turns out,
working on the model, results in defects around areas of
rapid curvature change which can be smoothed via some
filter. For this reason it is recommended to choose a small
scaling factor. This would result in a model with lots of
noise but in the same time should provide means for
smoothing without worrying about flattening completely the

smoothed area.
Fig. 23 illustrates the final results of our method. As it

turned out in practice, the most troublesome areas are those
of hair growth, and particularly the eyebrows. Also eyes
prove to be an extremely difficult part to represent due to the
difference in color between the eye bulb and the pupil.
Finally, ears prove are quite troublesome because of their
complex morphology.

Figure 21. Working Pictures

Figure 22. Initial Approaches

Figure 23. Final Results

REFERENCES
[1] H. Levkowitz and G. T. Herman: “GLHS: A generalized lightness,

hue and saturation color model. CVGIP: Graphical Models and
Image Processing”, 55(4):271–285, 1993.

[2] A. Hanbury: “The taming of the hue, saturation and brightness
colour space”, In Proceedings of the 7th CVWW, Bad Aussee,
Austria, 2002.

[3] HIPR2: “Image Processing and Learning Resources”,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm

[4] J. Canny: “A Computational Approach to Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence”, 8:679-714,
1986.

[5] J. E. Bresenham, "Algorithm for computer control of a digital
plotter", IBM Systems Journal, Vol. 4, No.1, January 1965,
pp. 25–30

[6] I. Sobel, G. Feldman: "A 3x3 Isotropic Gradient Operator for Image
Processing", presented at a talk at the Stanford Artificial Project in
1968, unpublished but often cited, orig. in Pattern Classification and
Scene Analysis, R. Duda. and P. Hart, John Wiley and Sons,'73,
pp271-2.

[7] J. D. Foley and A. van Dam (1982): “Fundamentals of Interactive
Computer Graphics”, Boston, MA, USA: Addison-Wesley.

[8] CIE Standard S 014-4/E:2006: Colorimetry - Part 4: “CIE 1976
L*a*b* Colour Spaces”

[9] C. Poynton: ”Frequently Asked Questions about Color”,
http://www.poynton.com

[10] MeshCAM: Powerful CAM Software for non-machinists.
http://www.meshcam.com

[11] ArtCAM: Artistic CAD/CAM Software. http://www.artcam.com

[12] 3DMaker: Software for Making Anaglyphs and Stereograms,
http://www.tabberer.com/sandyknoll/more/3dmaker/3dmaker.html

[13] VS3D:Virtual Sculpture CAD/CAM Software.
http://www.designscomputed.com/vs3d/

[14] Geomagic Studio: 3D Software for Creating 3D Models from 3D
Scanner Data.
http://www.geomagic.com/en/products/studio/index.shtml

[15] X. Gu, S. Zhang, L. Zhang, R. Martin, P. Huang and S. Yau:
“Holoimages”, Proceedings of the 2006 ACM symposium on Solid
and physical modeling, 129-138.

