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Abstract. Texturing is a fundamental process in computer graphics.
Texture is leveraged to enhance the visualization outcome for a 3D scene.
In many cases a texture image cannot cover a large 3D model surface
because of its small resolution. Conventional techniques like repeating,
mirroring or clamping to edge do not yield visually acceptable results.
Deep learning based texture synthesis has proven to be very effective in
such cases. All deep texture synthesis methods that attempt to create
larger resolution textures are limited in terms of GPU memory resources.
In this paper, we propose a novel approach to example-based texture
synthesis by using a robust deep learning process for creating tiles of
arbitrary resolutions that resemble the structural components of an input
texture. In this manner, our method is firstly much less memory limited
owing to the fact that a new texture tile of small size is synthesized
and merged with the existing texture and secondly can easily produce
missing parts of a large texture.

Keywords: Texture Synthesis · Deep Laarning.

1 Introduction

Texture synthesis aims at generating a new texture such that its resolution
and structure are appropriate for using it on wrapping a 3D model. Texture
expansion plays a cardinal role in many applications where a large texture is
required. Games along side with Geographic Information System (GIS) apps are
such cases in which large unbounded resolution textures are needed. In addition,
the same applies not only for diffuse textures but also for specular, normal, bump
and height maps.

Structure similarity with the original input texture is one of the most inves-
tigated topics on texturing. Many texture synthesis methods aim at expanding a
texture and usually on doubling its width and height. However, they simultane-
ously introduce an increased consumption of memory resources which severely
restricts its scalability. To this end, many such methods end up on running on
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CPU without leveraging the power and speed of GPU. Consequently, memory
efficiency is a key factor for texture synthesis and expansion.

Example-based texture synthesis techniques employ deep learning based op-
timization processes that seek larger resolution textures that resemble an input
texture. Such methods by targeting on producing synthesized images of larger
resolution textures [17], [19] do not have the capacity to create smaller or ar-
bitrary resolution textures. Tiling is the only alternative for building arbitrary
texture images. Therefore, tiling texture synthesis [2], [6], [7], is not only capable
of synthesizing larger textures but also a novel way of constructing step by step
a brand-new texture or for completing missing parts of a larger texture.

In this work, we propose a new texture synthesis approach that follows the
aforementioned procedure. Thus, our method is capable of generating new tiles
that match structurally and have the same morphology with the original input
texture. We utilize a space invariant deep neural network to produce a new tile
that can be used to expand the original texture. Subsequently our system builds
a new texture of arbitrary shape and size by artificially synthesizing tiles in any
direction by using constant memory.

2 Related Work

2.1 Texture Synthesis

Texture synthesis is a field of research that has drawn the attention of researchers
for many years. Starting from simple ideas of tiling patterns and stochastic
models to state of the art techniques based on exemplars all of them aim to
produce new synthetic visually acceptable textures.

The most effective approaches have proven to be example-based methods
that employ deep learning approaches [8], optimization-based techniques [12],
pixel-based [5], [18] and patch-based methods [13], [4].

Expanding texture synthesis is the most challenging among the texture syn-
thesis goals. Therefore, several techniques that aim at expanding texture synthe-
sis have been developed [10], [19]. The most recent ones rely on deep learning by
producing remarkable results on expanding and even for super-resolution texture
synthesis [14]. By using Convolutional Neural Networks (CNNs) of many layers
[17] or Generative Adversarial Networks (GANs) [6], [19] these methods corre-
late image features to produce a new synthesized high resolution texture map
and constitute the state-of-the-art methods on texture expansion. Nevertheless,
except for their efficacy on visually acceptable results they do have some limita-
tions like memory consumption and a very restricted either on the way of new
texture shapes are generated [19] (fixed new texture dimensions) or on adding
new patterns not included in the input image [6] (huge data-set of images that
contain different patterns) which in some cases is not the intention on texture
expansion.

Another work utilizing a Generative Adversarial Network (GAN) trained
to expand a texture in a uniform manner is [9]. On the other hand, there are
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optimization techniques like Self Tuning [13,3], which is a method that extends
texture optimization, that accomplish visually acceptable results.

2.2 Texture Tiling

The drawback of the aforementioned approaches is the large requirement of
memory resources that makes them unsuitable for GPUs. To this end, tiling
seems to be the only viable approach for synthesizing large textures.

One of the simplest texture design techniques is repeating tile patterns such
that the produced texture does not include seams. Moreover, methods generat-
ing stochastic tiles have been developed [2], [7] for the same purpose. However,
texture tiling is still an open field of research in terms of increasing texture
resolution without considerable performance downgrade.

Thus, tiling forms a new challenge for texture synthesis and deep learning
methods have already started being used to this end. Their main advantage is
the capability of synthesizing new textures that are not repeated. Instead, they
use one or more original input textures and produce random texture tiles in
any direction matching the original structure. One recent work that focuses on
creating high resolution texture tiles is [6]. This work introduces an approach to
homogenizing texture tiles outputs of GANs trained on lower resolution textures
to produce a high resolution texture with no seam artifacts by using Markov
Random Fields (MRF). However, this method has very high GPU memory space
requirements making it inappropriate for medium GPU configurations.

3 Deep Texture Tiling

The main issue of most of state-of-the-art methods is memory consumption that
is a key factor both on computation but also hardware cost which is more obvious
on using GPU for texture synthesis. To this end, we are focusing on creating
smaller textures that are merged together to form a new synthesized texture of
greater size but with respect on keeping the seamless manner of expanding in
every direction with new tiles.

We propose a novel algorithm for synthesizing tiles by extending the fun-
damental work by [8] on neural texture synthesis. In general, by leveraging the
power of a CNN of multiple layers we extract and correlate feature maps across
layers of two instances of a VGG19 [15] network given two different resolution
textures in each network. Our algorithm has the ability to synthesize texture
tiles in a seamless manner by optimizing the distance of feature maps across the
layers of our model by using as input textures the original and a new white noise
tile merged with the original texture towards a specific orientation (up, down,
right, left tiling).

Consequently, we embrace the main idea of deep texture synthesis but we
abandon the specific size expansion and replace it with tiling. More specifically,
we correlate feature spaces targeting to produce similar representations across
network layers. On the first network we forward the original image while on the
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Fig. 1: Deep texture tiling: Gllayer is the Gram Matrice of feature maps in layer
l which depends on the number of filters Nl. The network structure adopted is
VGG19 [15] by changing MaxPooling layers to AvgPooling layers. This figure is
generated by PlotNeuralNet (https://github.com/HarisIqbal88/PlotNeuralNet)
and then modified.

second network we utilize two user input tiling factors for width and height for
a new white noise tile creation that is forwarded along with the original as a
merged input texture.

To capture correlations among network layers we extract their feature space
representation F lli of a general feature map F l ∈ Rnf×vsf , where l is a layer hav-
ing nf filters of size vsf reshaped into one dimensional vectors. This is achieved
by the use of Gram Matrices:

Glrc =
∑
i

F lkiF
l
li (1)

The total layer loss is the sum of all layer losses that are computed as the
mean squared displacement of the Gram Matrices of the two VGG19 instances.
As a consequence, the total loss function is defined as follows:

Ltotal(Ioriginal, Imerged) =

NL∑
l=1

wl

4nlf
2
vslf

2

∑
(Gloriginal −Glmerged)2 (2)

where Ioriginal is the original texture and Imerged is a white noise texture
merged with the original one having been forwarded to our system as described
above and NL is the number of contributory layers. The whole process and
the layers contributing to the total loss function are shown in Figure 1. We
correlate feature representations along layer1, pool1, pool2, pool3, pool4 and the
corresponding weight setting for every layer contributory factor is 1

5 .
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In some texture input cases the output of our method produces some noise
in the boundaries of the original and deep generated tile. Therefore, we have
developed an additional preprocessing phase we call Seam Removal in which we
attempt to vanish the seam effect of deep texture tiling method. In the noise part
of the second network instance (Merged in Figure 1) instead of using a simple
noise we utilize a mirrored version of the input original texture and then we
apply noise that increases exponentially based on the distance of each column
from the seam. Specifically, every pixel for the Merged part of our model is
computed as:

Noise(i, j) = w1Original(i, width− j − i) + w2RandomColor (3)

(a) alpha = 0.25 (b) alpha = 0.05

Fig. 2: Seam Removal: exponentially fading column mirroring

where w1 = e−αj with α ∈ (0, 1), w2 = 1 − w1, i and j rows and columns
accordingly.The produced noise outcome with α = 0.25 and 0.05 is illustrated
in Figures 2a and 2b respectively. An optimal α can been determined by

α = −50 ln(0.5)

c

where c× r is the resolution of the input texture. To obtain this we have deter-
mined experimentally running our whole methodology in the same input texture
that the optimal visual result is derived by setting as target an attenuation of
50% (i.e. w1 = 0.5) of the original mirrored image when we reach the 2% of the
total number of columns (i.e. j = c/50). By doing so we achieve a seamless join
of the two images without the mirroring effect being noticeable.

Texture expansion can be accomplished utilizing the aforementioned method
in all directions by comparing input image with noise that is merged with a
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Fig. 3: The two Deep Texture Tiling Expansion methods. (left) Simple Right &
then Down Tiling, (right) Create tiles of equal size - Right & Down Tiling are
performed and then the Bottom Right Tile is produced by training our model
lowering the mean square displacement of all 4 merged tiles to an original texture
of double size. The second method is capable of keeping constant the amount
of memory needed to expand a texture on any direction by following the exact
same steps. Both methods are able to generate tiled textures of arbitrary size.

non noise part, using Gram matrices of arbitrary size. We have developed two
different ways of creating large non-homogeneous textures.

The first one is a two step method. Firstly, a tile expansion to one of the four
directions is performed with scaling factor that makes height or width of the
starting image being doubled. For example, by doing a right tiling the original
texture is doubled in width. Secondly, a tiling step is conducted, so that the
other dimension is doubled. In the aforementioned case a down tiling follows to
double the height, as well.

For limiting GPU memory requirements, we have developed an additional
tiling method that it is slower but needs constant memory on the GPU. The
method comprises three tiling steps. First we perform a side tiling, then a down
tiling and eventually we end up merging the three tiles with a noise and our
method goal is to converge on resembling to a fixed size original texture that we
additionally provide as input. This approach is capable of serving as a missing tile
filling method and it is presented along with the aforementioned Simple Tiling
method in Figure 3. The drawback of this method that needs to be improved in
the future is the forwarding of noise that is incrementally passed on to the new
synthesized tiles.
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4 Results & Evaluation

Our method has been developed on Python, using Tensorflow [1] and it has
been tested on an NVIDIA GeForce RTX 2080 Ti with 11GB GDDR6 RAM
and 1350MHz base clock. Input texture resolution was 256× 256 and we used a
tiling factor of 1 for both width and height of the generated input noise in both
right and up tiling with which the original textures were merged (second VGG19
input). All outputs have been produced by 100000 iterations by utilizing the
Adam optimizer [11] with learning rate = 0.0005 on our system learning process
and the running average time was ≈ 2400 secs. However, using this learning rate
to which we concluded experimentally we observe after 50000 epochs our method
has already converged (Figure 4) in all input cases and it is just searching for a
better minima and visual outcome with minor changes on loss valuese.

Fig. 4: Loss function per epoch during training for producing a new right tile
with Adam optimizer [11] and learning rate = 0.0005 on a range of 100000
iterations.

In Figures 5 and 6 results of our algorithm are presented showing that syn-
thesis of texture tiles which highly match an original texture is plausible by using
our deep learning system with acceptable visual quality. In addition, Figure 7
depicts how effective is our method producing synthesized textures (consisted
of new synthetic tiles) of larger size comparing to the original input tile. In
this specific case, our method produces textures of double size (256 × 256 to
512× 512) and in all cases Seam Removal with a = 0.15 is used. Our method is
able to be used in left and down tiling and in cases in which a part of texture is
missing, as well. In the latter case, the merged texture is the union of all other
tiles surrounding the missing part (noise) which should then resemble to a fixed
size image, as presented in Section 3.

Finally, we compare our method with state-of-the-art methods as shown in
Figures 8a and 8b with [19] and [6] being the corresponding methods accordingly.
Both methods are designed for different applications. However, this is a valid
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Fig. 5: Results of deep right texture tiling (half texture tile on the right is syn-
thesized): Odd rows have been generated by deep texture tiling for right tile
construction without seam removal applied, even rows illustrate the same but
with seam removal by exponential column mirroring with α = 0.15.
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Fig. 6: Results of deep up texture tiling (upper half texture tile is synthesized):
tiles synthesized on up direction with no seam removal.
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Fig. 7: Results for doubling the texture size with Deep Tiling: First, a right tiling
is performed to produce a 512× 256 tile and then a down tiling to produce the
final 512 × 512 outcome. Seam removal by exponential column mirroring with
α = 0.15 is used. The last two input images are part of Pindos mountains and
Athens city respectively and they have been extracted from Google Maps.
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informal comparison of our method with two of the most competent methods in
texture synthesis.

(a) Visual comparison with [19]. Generating from 256 × 256 texture a synthesized of
512× 512 size.

(b) Visual comparison with TileGAN [6]. Guidance images resolutions for TileGAN
used on this experiment is 32× 32 so that the output of this method being a 512× 512
image. In this manner, we are able to make our method comparable to the aforemen-
tioned work.

Fig. 8: Non-stationary expansion sub-figure 8a and TileGAN sub-figure 8b out-
puts are presented in second column and ours in last column.

Our method based on the the outcome of running it in non-stationary tex-
tures is not capable of synthesizing new seamless tiles. Thus, this constitutes
one of the limitations of our method. This is mainly because our method is
not designed to capture such patterns as [19] does and due to the tiling nature.
Therefore, we see our method failing and not capturing well such type of textures
on a seamless manner. However, [19]’s goal is generating such textures mainly.
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As a consequence, it makes it not compatible for comparing our method with,
in a formal way.

On the other hand, although TileGAN [6] is closer to our rational and way of
producing new textures, it is not targeting to expand a texture towards a direc-
tion as we do, but their outcome is a synthesized texture of greater size trying to
keep the structure as it is shown in sub-figure 8b. To this end, this method cannot
be formally compared with ours owing to the fact that the two approaches are
targeting into tackle different problems. Nevertheless, both technique’s results
are visually and perceptually acceptable as synthesized textures.

5 Conclusions & Future Work

We presented an innovative tiling synthesis method that is capable of produc-
ing new texture tiles in any direction. Moreover, we have introduced a new
method for reducing the seam effect in texture synthesis. Based on the results,
our method has proven to be very effective on tile texture synthesis bearing an
essential advantage due to the fact that tiles can be generated in small resolu-
tions step by step, making even low memory GPUs capable of synthesizing high
resolution textures. A limitation of our approach is that noise is passed on from
one tile to another and this is an issue that could be reduce using Gaussian pyra-
mid as in [16]. As future work, we are also targeting at expanding our method
with style transfer by creating new tiles of mixed styles. This is required for
generating high resolutions textures or terrains that differ from area to area.
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