
fragment allocation

Deep Hybrid
Order-Independent Transparency

Grigoris Tsopouridis1, Ioannis Fudos1, Andreas-Alexandros Vasilakis1,2

1 Department of Computer Science and Engineering, University of Ioannina, Greece
2 Department of Informatics, Athens University of Economics and Business, Greece

The Project is co-funded by the European Union
and by National Funds of Greece & Albania

Deep Hybrid Order-Independent Transparency

Transparency Effects

Foliage partial
coverage

Glass transmission
and refraction

Volumetric lighting

Deep Hybrid Order-Independent Transparency

 Problem: Rasterization generates more than one out-of-order fragments per pixel
 Z-buffer, single-fragment visibility determination
 Alpha blending is not correct

 Correct transparency composition requires fragments generated in depth order [PD84]

Handling Transparency in Rasterization

Compositing order matters!

[PD84] Porter & Duff: Compositing digital images, SIGGRAPH ’84.

Deep Hybrid Order-Independent Transparency

 OIT resolves transparency without explicit fragment ordering
 Classification
 Exact: Buffer-based methods (multifragment rendering)
 Approximate: Faster, inaccurate methods

 e.g.: Alter the compositing operator

Order-Independent Transparency (OIT)

Deep Hybrid Order-Independent Transparency

Multifragment rendering [VVP20]

A-buffer

Stores all scene
information

k-buffer

Stores a fraction of
scene information

Common OIT Solution Strategy

[VVP20] Vasilakis, et al.: A survey of multifragment rendering, EG STAR 2020.

Deep Hybrid Order-Independent Transparency

Multifragment rendering [VVP20]

A-buffer

Stores all scene
information

k-buffer

Stores a fraction of
scene information

A-buffer: Correct OIT result

[VVP20] Vasilakis, et al.: A survey of multifragment rendering, EG STAR 2020.

Deep Hybrid Order-Independent Transparency

• Perfect quality
• Operate on all sorted fragments

• Memory overflow
• Unbounded storage allocation

• Slow sorting
• Cache overflow and latency issues

A-buffer: Store all fragments then sort them [Car84]

[Car84] Carpenter: The A-buffer, an antialiased hidden surface method., SIGGRAPH 1984.

Deep Hybrid Order-Independent Transparency

k-buffer: Partly exact OIT result

Multifragment rendering [VVP20]

A-buffer

Stores all scene
information

k-buffer

Stores a fraction of
scene information

[VVP20] Vasilakis, et al.: A survey of multifragment rendering, EG STAR 2020.

Deep Hybrid Order-Independent Transparency

k-buffer: Store and sort k fragments [BCL*07]

• Captures a subset of all fragments
• Usually, the k-closest to camera

• Requires a fixed, pre-defined memory
• Fixed (global value)
• Variable (per-pixel value)

[BCL*07] Bavoil, et al.: Multi-fragment effects on the GPU using the k-buffer, I3D 2007.

Deep Hybrid Order-Independent Transparency

Challenge to find a good global k value

• Fine-tuning global k-value
• Set low: view-dependent artifacts
• Set high: unused memory

• Automatic solution based on depth
complexity histogram analysis [VPF15]

• Alleviate some problems, not all!

[VPF15] Vasilakis, et al.: k+-buffer: An efficient, memory-friendly and dynamic k-buffer framework, IEEE TVCG 2015.

Deep Hybrid Order-Independent Transparency

Variable k-buffer [VVPM17]

• Better image quality for same
allocated memory bandwidth

• Uses more memory for the
“more important” pixel areas
of the image

• Exact memory allocation in a
global continuous buffer

• Performance loss
• Additional rendering pass
• Thread divergence, higher

fragment complexities

[VVPM17] Vasilakis, et al.: Variable k-buffer using importance maps, EG Short Papers 2017.

Deep Hybrid Order-Independent Transparency

Hybrid Transparency [MCTB13]

• Core
• Uses a traditional k-buffer
• Exact, but slow, OIT of near

fragments
• Tail

• Rest fragments are blended
• Fast, but approximate, OIT of far

fragments

• OIT is the combination of the above

[MCTB13] Maule, et al.: Hybrid Transparency, I3D 2013.

Deep Hybrid Order-Independent Transparency

Deep Hybrid Order-Independent Transparency
 Predict pixel importance with a deep learning prediction mechanism,

under a fixed and pre-defined memory budget
 Exploit Hybrid Transparency strategy to further improve visual quality

Fragment distribution heatmap

Can we predict better per-pixel k values?

Generated per-pixel k-values

Deep Hybrid Order-Independent Transparency

 A fast geometry pass is used to extract NN inputs from the scene
 Per-pixel importance is then predicted from the NN which is then
 Used to compute a variable pixel k-value
 Memory (k values) allocated in areas considered more important

 Synchronized k-buffer is used to store and sort the core fragments [VPF15]

 Tail fragments are accumulated with a quick Weighted Average approximation [BM08]

Deep k-buffer rendering pipeline

[VPF15] Vasilakis, et al.: k+-buffer: An efficient, memory-friendly and dynamic k-buffer framework, IEEE TVCG 2015.
[BM08] Bavoil & Mayers: Order independent transparency with dual depth peeling, Nvidia report, 2008.

Deep Hybrid Order-Independent Transparency

 Simple neural network with two hidden layers of 128 and 64 neurons
 ReLU hidden layer activation function
 Sigmoid activation function used for output layer
 Expresses pixel importance I(p) ∈ [0,1] values

 SGD optimizer
 12 float input features

Neural Network Architecture

Deep Hybrid Order-Independent Transparency

 Image-based:
 Allocated fragments (memory budget M) divided by total number of fragments of the scene
 Nearest and farthest scene fragment depths

 Per-pixel:
 Nearest and farthest pixel fragment depths
 Diffuse color (RGB) of the nearest fragment
 Average diffuse color (RGB) of pixel fragments
 Number of pixel fragments divided by the total number of fragments of the scene

Neural Network Input Features

Deep Hybrid Order-Independent Transparency

 Trained from 8 fully transparent scenes with varying depth complexity and
multiple scene views
 Desired outputs (optimal pixel importance) produced offline using a greedy

algorithm that computes the optimal fragment distribution

Neural Network Training

Deep Hybrid Order-Independent Transparency

But how we find the “optimal” pixel importance?

Optimal fragment distribution
Distribute fragment space (based on the desired memory allocation) to each pixel in
order to minimize the MSE of Hybrid Transparency compared to exact A-buffer method

Optimal per-pixel importance
Divide the optimal fragment distribution by the desired total fragments (memory limit)

Deep Hybrid Order-Independent Transparency

1. Starting from A-Buffer, set the optimal fragment distribution equal to the A-buffer
distributions and a desired memory size, and remove at each iteration the farthest from
the viewer fragment that causes the minimum perceptual error increase.

Optimal k-buffer method

Deep Hybrid Order-Independent Transparency

1. Starting from A-Buffer, set the optimal fragment distribution equal to the A-buffer
distributions and a desired memory size, and remove at each iteration the farthest from
the viewer fragment that causes the minimum perceptual error increase.

2. For each pixel, compute the perceptual error difference if we temporarily remove the
farthest fragment, while all other pixels remain unaltered, and store it in a min heap.

Optimal k-buffer method

Deep Hybrid Order-Independent Transparency

1. Starting from A-Buffer, set the optimal fragment distribution equal to the A-buffer
distributions and a desired memory size, and remove at each iteration the farthest
from the viewer fragment that causes the minimum perceptual error increase.

2. For each pixel, compute the perceptual error difference if we temporarily remove the
farthest fragment, while all other pixels remain unaltered, and store it in a min heap.

3. Remove the fragment that contributes the least (top of the heap) from the optimal
fragment distribution and repeat [2] only for this pixel.

Optimal k-buffer method

Deep Hybrid Order-Independent Transparency

1. Starting from A-Buffer, set the optimal fragment distribution equal to the A-buffer
distributions and a desired memory size, and remove at each iteration the farthest
from the viewer fragment that causes the minimum perceptual error increase.

2. For each pixel, compute the perceptual error difference if we temporarily remove the
farthest fragment, while all other pixels remain unaltered, and store it in a min heap.

3. Remove the fragment that contributes the least (top of the heap) from the optimal
fragment distribution and repeat [2] only for this pixel.

4. Repeat [3] until the desired memory size is reached.

Optimal k-buffer method

Deep Hybrid Order-Independent Transparency

 Our method (DKB) is compared with Fixed k-buffer (FKB) and
Variable k-buffer (VKB) simulating Hybrid Transparency

 Different testing scenarios of
 Varying depth complexity: 30-120 fragments
 Memory budgets: 20 & 40 MB
 Error metrics : MSE & FLIP [ANA*20]

 1430 × 960 viewport on an NVIDIA RTX 2080 Super

 OpenGL 4.6

Experimental Evaluation

[ANA*20] Andersson, et al.: FLIP: A difference evaluator for alternating images, I3D 2020.

Deep Hybrid Order-Independent Transparency

Qualitative Results – Lost Empire (20MB)

Deep Hybrid Order-Independent Transparency

Qualitative Results – Rungholt (20MB)

Deep Hybrid Order-Independent Transparency

Qualitative Results – Video

Deep Hybrid Order-Independent Transparency

Qualitative Results – Varying memory

Method FKB VKB DKB

Vokselia Spawn, M = 20MB

k(p) 2 1-9 1-5

Captured
fragments

24% 40% 40%

Crytek Sponza, M = 40MB

k(p) 4 2-25 4-25

Captured
fragments

39% 83% 83%

Deep Hybrid Order-Independent Transparency

 Minor overhead over VKB

 Depends on NN inference time
 Can be further reduced by simplifying NN
 Depends on number of transparent pixels

Performance Analysis

Method DKB VKB
Vokselia Spawn, M = 20MB

Feature extraction 1.95 0.9

Importance computation 1.48 0.45

Synchronized k-buffer 18.97 18.97

Total time (ms) 22.40 20.32

Crytek Sponza, M = 40MB

Feature extraction 1.6 0.45

Importance computation 3.25 0.39

Synchronized k-buffer 10.38 10.38

Total time (ms) 15.25 11.22

Deep Hybrid Order-Independent Transparency

 The first deep learning multifragment rendering method
 Improves Variable k-Buffer quality, with a minor overhead
 Distributes fragment storage to more important pixels
 Uses a simple deep learning mechanism
 Relies on a novel backward greedy algorithm for optimal fragment distribution

 Future directions
 Different deep learning model architectures (CNN)
 Different effects (Ambient Occlusion, Global Illumination, Shadows)
 Game engine integration

Conclusions & Future Work

Deep Hybrid Order-Independent Transparency

3D SCENES:
 Lost Empire, Vokselia Spawn, Rungholt and Crytek Sponza were downloaded from Morgan McGuire’s

Computer Graphics Archive [MG17].

FUNDING:
 This research was supported by project “Dioni: Computing Infrastructure for Big-Data Processing and

Analysis” (MIS No. 5047222) co-funded by European Union (ERDF) and Greece through Operational Program
“Competitiveness, Entrepreneurship and Innovation,” NSRF 2014-2020

 This work has been co-financed by the European Union (European Regional Development Fund- ERDF) and
Greek national funds through the Interreg Greece Albania 2014-2020 Program (project VirtuaLand)

Acknowledgements

fragment allocation

The Project is co-funded by the European Union
and by National Funds of Greece & Albania

Deep Hybrid Order-Independent Transparency

Thank you for your attention!

Questions ?

fragment allocation

The Project is co-funded by the European Union
and by National Funds of Greece & Albania

	Slide Number 1
	Transparency Effects
	Handling Transparency in Rasterization
	Order-Independent Transparency (OIT)
	Common OIT Solution Strategy
	A-buffer: Correct OIT result
	Slide Number 7
	Slide Number 8
	k-buffer: Store and sort k fragments [BCL*07]
	Challenge to find a good global k value
	Variable k-buffer [VVPM17]
	Hybrid Transparency [MCTB13]
	Can we predict better per-pixel k values?
	Deep k-buffer rendering pipeline
	Neural Network Architecture
	Neural Network Input Features
	Neural Network Training
	But how we find the “optimal” pixel importance?
	Optimal k-buffer method
	Optimal k-buffer method
	Optimal k-buffer method
	Optimal k-buffer method
	Experimental Evaluation
	Qualitative Results – Lost Empire (20MB)
	Qualitative Results – Rungholt (20MB)
	Qualitative Results – Video
	Qualitative Results – Varying memory
	Performance Analysis
	Conclusions & Future Work
	Acknowledgements
	Thank you for your attention!��Questions ?

